29 research outputs found

    Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection: Innate Immunity

    Get PDF
    Tissue Factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TFΔ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2 like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth

    Update on Novel Targeted Therapy for Pleural Organization and Fibrosis

    No full text
    Pleural injury and subsequent loculation is characterized by acute injury, sustained inflammation and, when severe, pathologic tissue reorganization. While fibrin deposition is a normal part of the injury response, disordered fibrin turnover can promote pleural loculation and, when unresolved, fibrosis of the affected area. Within this review, we present a brief discussion of the current IPFT therapies, including scuPA, for the treatment of pathologic fibrin deposition and empyema. We also discuss endogenously expressed PAI-1 and how it may affect the efficacy of IPFT therapies. We further delineate the role of pleural mesothelial cells in the progression of pleural injury and subsequent pleural remodeling resulting from matrix deposition. We also describe how pleural mesothelial cells promote pleural fibrosis as myofibroblasts via mesomesenchymal transition. Finally, we discuss novel therapeutic targets which focus on blocking and/or reversing the myofibroblast differentiation of pleural mesothelial cells for the treatment of pleural fibrosis

    The Contribution of the Urokinase Plasminogen Activator and the Urokinase Receptor to Pleural and Parenchymal Lung Injury and Repair: A Narrative Review

    No full text
    Pleural and parenchymal lung injury have long been characterized by acute inflammation and pathologic tissue reorganization, when severe. Although transitional matrix deposition is a normal part of the injury response, unresolved fibrin deposition can lead to pleural loculation and scarification of affected areas. Within this review, we present a brief discussion of the fibrinolytic pathway, its components, and their contribution to injury progression. We review how local derangements of fibrinolysis, resulting from increased coagulation and reduced plasminogen activator activity, promote extravascular fibrin deposition. Further, we describe how pleural mesothelial cells contribute to lung scarring via the acquisition of a profibrotic phenotype. We also discuss soluble uPAR, a recently identified biomarker of pleural injury, and its diagnostic value in the grading of pleural effusions. Finally, we provide an in-depth discussion on the clinical importance of single-chain urokinase plasminogen activator (uPA) for the treatment of loculated pleural collections

    Interferon-γ Preferentially Promotes Necroptosis of Lung Epithelial Cells by Upregulating MLKL

    No full text
    Necroptosis, a form of programmed lytic cell death, has emerged as a driving factor in the pathogenesis of acute lung injury (ALI). As ALI is often associated with a cytokine storm, we determined whether pro-inflammatory cytokines modulate the susceptibility of lung cells to necroptosis and which mediators dominate to control necroptosis. In this study, we pretreated/primed mouse primary lung epithelial and endothelial cells with various inflammatory mediators and assessed cell type-dependent responses to different necroptosis inducers and their underlying mechanisms. We found that interferon-γ (IFNγ) as low as 1 ng/mL preferentially promoted necroptosis and accelerated the release of damage-associated molecular patterns from primary alveolar and airway epithelial cells but not lung microvascular endothelial cells. Type-I IFNα was about fifty-fold less effective than IFNγ. Conversely, TNFα or agonists of Toll-like receptor-3 (TLR3), TLR4, TLR7 and TLR9 had a minor effect. The enhanced necroptosis in IFNγ-activated lung epithelial cells was dependent on IFNγ signaling and receptor-interacting protein kinase-3. We further showed that necroptosis effector mixed lineage kinase domain-like protein (MLKL) was predominantly induced by IFNγ, contributing to the enhanced necroptosis in lung epithelial cells. Collectively, our findings indicate that IFNγ is a potent enhancer of lung epithelial cell susceptibility to necroptosis

    Plasma Membrane CFTR Regulates RANTES Expression via Its C-Terminal PDZ-Interacting Motif

    No full text
    Despite the identification of 1,000 mutations in the cystic fibrosis gene product CFTR, there remains discordance between CFTR genotype and lung disease phenotype. The study of CFTR, therefore, has expanded beyond its chloride channel activity into other possible functions, such as its role as a regulator of gene expression. Findings indicate that CFTR plays a role in the expression of RANTES in airway epithelia. RANTES is a chemokine that has been implicated in the regulation of mucosal immunity and the pathogenesis of airway inflammatory diseases. Results demonstrate that CFTR triggers RANTES expression via a mechanism that is independent of CFTR's chloride channel activity. Neither pharmacological inhibition of CFTR nor activation of alternative chloride channels, including hClC-2, modulated RANTES expression. Through the use of CFTR disease-associated and truncation mutants, experiments suggest that CFTR-mediated transcription factor activation and RANTES expression require (i) insertion of CFTR into the plasma membrane and (ii) an intact CFTR C-terminal PDZ-interacting domain. Expression of constructs encoding wild-type or dominant-negative forms of the PDZ-binding protein EBP50 suggests that EBP50 may be involved in CFTR-dependent RANTES expression. Together, these data suggest that CFTR modulates gene expression in airway epithelial cells while located in a macromolecular signaling complex at the plasma membrane

    Myo5b Transports Fibronectin-Containing Vesicles and Facilitates FN1 Secretion from Human Pleural Mesothelial Cells

    No full text
    Pleural mesothelial cells (PMCs) play a central role in the progression of pleural fibrosis. As pleural injury progresses to fibrosis, PMCs transition to mesenchymal myofibroblast via mesothelial mesenchymal transition (MesoMT), and produce extracellular matrix (ECM) proteins including collagen and fibronectin (FN1). FN1 plays an important role in ECM maturation and facilitates ECM-myofibroblast interaction, thus facilitating fibrosis. However, the mechanism of FN1 secretion is poorly understood. We report here that myosin 5b (Myo5b) plays a critical role in the transportation and secretion of FN1 from human pleural mesothelial cells (HPMCs). TGF-β significantly increased the expression and secretion of FN1 from HPMCs and facilitates the close association of Myo5B with FN1 and Rab11b. Moreover, Myo5b directly binds to GTP bound Rab11b (Rab11b-GTP) but not GDP bound Rab11b. Myo5b or Rab11b knockdown via siRNA significantly attenuated the secretion of FN1 without changing FN1 expression. TGF-β also induced Rab11b-GTP formation, and Rab11b-GTP but not Rab11b-GDP significantly activated the actin-activated ATPase activity of Myo5B. Live cell imaging revealed that Myo5b- and FN1-containing vesicles continuously moved together in a single direction. These results support that Myo5b and Rab11b play an important role in FN1 transportation and secretion from HPMCs, and consequently may contribute to the development of pleural fibrosis
    corecore