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Abstract

Tissue Factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by 

activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate 

immune response to infections. In the current study, we determined the role of TF expressed by 

myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF 

gene in myeloid cells (TFΔ) and human monocyte derived macrophages (MDMs). We found that 

during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible 

nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 

production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our 

results demonstrate that a deficiency of TF in myeloid cells promotes M2 like phenotype in M .tb 

infected macrophages. A deficiency in TF expression by myeloid cells was also associated with 

reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated 
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inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells 

has newly recognized abilities to polarize macrophages and to regulate M. tb growth.
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Introduction

Tuberculosis (TB) is a leading cause of death world-wide that, claims an estimated 1.3 

million lives annually [1, 2]. Mycobacterium tuberculosis (M. tb) can proliferate and survive 

in alveolar and tissue macrophages, which favor the establishment and progression of 

infection, and has the capacity to persist and reactivate disease even decades later. To 

develop new tools to prevent tuberculosis, it is important to identify the factors that regulate 

inflammation and the intracellular growth of M. tb in macrophages.

Tissue Factor (TF) also known as factor III, tissue thromboplastin, and CD142 is a 47 kD 

transmembrane glycoprotein that belongs to the cytokine receptor superfamily and that plays 

an essential role in hemostasis by activating coagulation [3, 4]. TF is also expressed in a 

wide range of cancers, metabolic diseases and infections and contributes to inflammation, 

angiogenesis and apoptosis [3–6]. TF is constitutively expressed by various cell types, 

including vascular smooth muscle cells, fibroblasts, and epithelial cells, and can be induced 

in activated monocytes/macrophages and endothelial cells [6–9]. For instance, bacterial 

products such as lipopolysaccharide induce TF expression in monocytes [6–8]. This 

response is thought to be part of the innate immune system that reduces the dissemination of 

pathogens. Previous studies have shown that human monocyte derived macrophages 

(MDMs) express TF in response to M. tb exposure [10]. A recent study using low TF 

expressing mice in M. tb suggested that TF exerts a limited role in TB pathogenesis [11]. 

We posited that specific deletion of TF in myeloid cells could enhance pulmonary M. tb 

infection and sought to test this inference in the present study. We used mice lacking the TF 

gene specifically in myeloid cells (TFfl/fl, LysMCre), which are referred to as TFΔ mice and 

human MDMs with reduced TF expression. We found that during M. tb infection, a 

deficiency of TF in myeloid cells was associated with the polarization of macrophages to a 

more M2 like phenotype, enhanced IL-10 production and reduced apoptosis of infected 

macrophages which augmented M. tb growth. In addition, a deficiency of TF expression by 

myeloid cells was associated with reduced fibrin deposition and enhanced matrix 

metalloproteases (MMP)-2 and MMP-9-mediated inflammation in M. tb infected lungs.

Results

TF expression and bacterial burden in M. tb infected wild type C57BL/6 mice

To determine if TF expression increases with bacterial burden, C57BL/6 mice were infected 

with M. tb H37Rv by aerosol. One, two, three, four and eight weeks after infection, TF 

expression in the lungs were determined using real-time PCR. As shown in Fig. 1A, after 

one week the number of CFU was 2.4 ± 0.2 × 103, and this increased to 1.1 ± 0.2 × 104 CFU 
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(p<0.05), 1.5 ± 0.5 × 105 CFU (p<0.05), 0.9 ± 0.2 × 106 CFU, and 0.74 ± 0.15 × 106 CFU 

per lung (p<0.05) by the 2nd, 3rd 4th and 8th week after infection, respectively. We also 

measured TF expression in the lungs at weekly intervals. As shown in Fig. 1B, one week 

after M. tb infection TF expression was upregulated 2.69-fold compared to uninfected mice 

lungs (p<0.05). This was increased to 5.7-fold (p<0.05), 8.2-fold (p<0.05), 5.3-fold (p<0.05) 

and 6.8-fold (p<0.05) after the 2nd, 3rd 4th and 8th week of infection, respectively. Our 

results indicate that TB infection is associated with an increased TF expression in the lungs.

TF expression by myeloid cells controls M. tb growth

To determine the role of TF expressed by myeloid cells in the control of M. tb growth, we 

infected mice lacking the TF gene in their myeloid cells (TFΔ mice) and control mice 

(TFfl/fl) with M. tb H37Rv by aerosol as described in the methods section. Thirty days after 

infection, the bacterial burden in the lungs, spleen, mediastinal lymph nodes (MLN) and 

liver was determined. There was a marginal, but significant increase in the number of 

bacteria in TFΔ mice lung than TFfl/fl mice (1.9 ± 0.1 × 106 vs. 3.7 ± 0.2 × 106, p=0.0005, 

Fig. 2A). In the spleen (Fig. 2B), MLN (Fig. 2C) and liver (Fig. 2D) the number of CFU was 

significantly higher in TFΔ mice compared to TFfl/fl mice. Sixty days after infection, there 

was a similar increase in bacterial burden in the lungs, spleen, MLN and liver (Supporting 

Information Fig. 1). To confirm that increased M. tb growth in TFΔ mice is due to lack of the 

TF gene expression in macrophages, we isolated peritoneal exuded macrophages (PEMs) 

from control TFΔ mice and control TFfl/fl mice and infected them with M. tb. The CFU were 

quantified after 2 h and after 5 d. In 3 independent experiments, at 2 h after infection CFU 

were similar in TFΔ and TFfl/fl PEMs (Fig. 2E) suggesting that both TFΔ and TFfl/fl 

macrophages were infected by M. tb H37Rv with similar efficiency. However, at 5d post-

infection, CFU in TFΔ mouse PEMs were 6.1 ± 0.9 × 106 compared to 1.5 ± 0.7 × 106 in 

TFfl/fl mice PEMs (p=0.02; Fig. 2E).

Immunohistochemical analysis of M. tb infected TFΔ and TFfl/fl mice lungs

We next asked whether the lack of TF gene in myeloid cells had any effect on inflammatory 

and anti-inflammatory responses upon M. tb infection. TFΔ and TFfl/fl mice were infected 

with M. tb H37Rv. After 30 days, lungs from TFΔ and TFfl/fl control and M. tb infected mice 

were isolated, formalin fixed and paraffin-embedded. From these tissues, tissue sections 

were prepared and stained with hematoxylin and eosin. Histological analyses demonstrated 

more inflammation throughout the lungs of the M. tb infected TFΔ mice than in the TFfl/fl 

mice (Fig. 3A). In addition to inflammation, as shown in Fig. 3B, there was a significant 

increase in foamy macrophages and small granulomas in the lung sections of M. tb infected 

TFΔ mice. M. tb infection led to development of IL-10 producing, less phagocytic and less 

bactericidal foamy macrophages [12]. We next determined whether the foamy macrophages 

are the source of increased IL-10. The above described M. tb infected TFΔ and TFfl/fl mouse 

lung sections were next examined for IL-10+ foamy macrophages. As shown in Fig. 3C, 

62.4 ± 8.4 % of M. tb infected TFΔ mice alveolar macrophages were IL-10+ compared with 

31.2 ± 3.4 % of alveolar macrophages in the M. tb infected TFfl/fl mice (p=0.009; Fig. 3C). 

Our results demonstrate that lack of TF expression by myeloid cells is associated with 

increased cell infiltration and anti-inflammatory responses in lung tissue upon M. tb 

infection.
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Macrophages from M. tb infected TFΔ mouse produce more IL-10 and are less apoptotic 
and assume a M2 like phenotype

To confirm the results of the above immunohistochemical analyses and determine whether 

the increased M. tb growth seen in Fig. 2 was related to enhance IL-10 production in M .tb 

infected TFΔ mice, we infected TFΔ and TFfl/fl mice with M. tb H37Rv. After 30 days IL-10 

levels in the lungs of these mice were measured using real-time PCR. As shown in Fig. 4A, 

M. tb infected TFΔ mice had 3-fold higher levels of IL-10 mRNA (p=0.0004) in their lungs 

compared to M. tb infected TFfl/fl mice. We also measured iNOS and Arg1 expression by 

real-time PCR. As shown in Fig. 4, M. tb infected TFΔ mice had less iNOS (p=0.05, Fig. 

4B) and 3 fold more Arg1 mRNA (p=0.02, Fig. 4C) in their lungs than the M. tb infected 

TFfl/fl mice. There was a similar decrease in iNOS expression and increase in Arg1 

expression in the lungs at 60 days after infection in M. tb infected TFΔ mice compared to M. 

tb infected TFfl/fl mice (Supporting Information Fig. 2 F and G).

Previously, we found that, transcription factor c-Maf enhanced IL-10 production in M. tb 

infected macrophages [13]. We measured c-Maf expression in the above lung samples. As 

shown in Fig. 4D, M. tb infected TFΔ mice expressed 2.5-fold more c-Maf mRNA (p=0.01) 

in their lungs compared to M. tb infected TFfl/fl mice. IL-10 enhances M. tb growth in 

macrophages by decreasing apoptosis in M. tb infected macrophages [14–16]. We next 

determined the levels of apoptotic cells in the lungs of M. tb infected TFΔ and TFfl/fl mice by 

TUNEL assay. As shown in Fig. 4E, 7.6 ± 1.6 % of the M. tb infected TFΔ mouse alveolar 

cells were apoptotic compared to 16.4 ± 2.3 % of the alveolar cells in M. tb infected TFfl/fl 

mice (p=0.01; Fig. 4E). In other experimental systems it has been shown that disrupting 

mitochondrial membrane potential (ΔΨm) leads to apoptosis [17–19]. Thirty days after M. tb 

infection we quantified ΔΨm in M. tb infected TFΔ and TFfl/fl alveolar cells. As shown in 

Fig. 4F, 9.4 ± 3 % of M. tb infected TFΔ mice alveolar cells show loss of ΔΨm compared to 

34.5 ± 18.7 % of alveolar cells in the M. tb infected TFfl/fl mice suggesting that lack of TF 

expression by myeloid cells leads to reduced loss of ΔΨm.

To determine if macrophages from M. tb infected TFΔ mouse express reduced levels of 

iNOS, increased levels of Arg1 and produce more IL-10, we isolated PEMs from control 

TFΔ and TFfl/fl mice and infected them with M. tb H37Rv. After 72 h, culture supernatants 

were collected and IL-10 levels were measured by ELISA. As shown in Fig. 4G, M. tb 

infected TFΔ mice PEMs produced 3 fold more IL-10 (733.0 ± 135.0 vs. 234.5 ± 43.0 pg/ml, 

p=0.02, Fig. 4G) compared to M. tb infected TFfl/fl PEMs. Real-time PCR analysis of the 

above cultured cells was performed to quantify levels of iNOS, Arg1 and CD163 expression. 

As shown in Fig. 4H, M. tb infected TFΔ PEMs expressed ∼2-fold less iNOS (p=0.03, Fig. 

4H), 2-fold more Arg1 (p=0.04, Fig. 4I) and 3-fold more CD163 (p=0.03, Fig. 4J) mRNA 

than M. tb infected TFfl/fl mouse PEMs.

To confirm that M. tb infected TFΔ mouse macrophages were less apoptotic, we isolated 

PEMs from control TFΔ and TFfl/fl mice, infected them with M. tb H37Rv and quantified the 

apoptotic cells after 72 h by TUNEL assay. As shown in Fig. 4K, 3.8 ± 1.2 % of M. tb 

infected TFΔ mouse and 8.4 ± 1.4 % of M. tb infected TFfl/fl mouse PEMs were apoptotic 

(p=0.04). As shown in Fig. 4L, 7.4 ± 2.9 % of M. tb infected TFΔ mouse PEMs and 23 ± 4.7 

Venkatasubramanian et al. Page 4

Eur J Immunol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



% of wild type PEMs show loss of ΔΨm suggesting that lack of TF expression by myeloid 

cells leads to reduced loss of ΔΨm (p=0.02) and less apoptosis. Collectively, our results 

suggest that lack of TF expression polarizes M. tb-infected macrophages towards an M2 like 

phenotype.

Increased inflammation in M. tb infected TFΔ mouse lungs is not due to IFN-γ and IL-17

We have shown that there is augmented growth of M. tb and inflammation in the lungs of M. 

tb infected TFΔ mice. We next aimed to investigate whether these processes are due to 

increased Th1 or Th17 cytokines producing T-cells. TFΔ and TFfl/fl mice were infected with 

M. tb and after 30 days the number of CD4+ and CD8+ cells in the lungs of control and M. 

tb infected mice were determined. As shown in Fig. 5A, the number of CD4+ cells in the 

lungs of M. tb infected TFΔ lungs was significantly higher than in M. tb infected TFfl/fl 

mouse lungs (4.8 ± 0.8 × 104 vs. 1.8 ± 0.3 × 104; p=0.009). Similarly, there were 2.1 ± 0.4 × 

104 CD8+ cells in M. tb infected TFΔ mouse lungs compared to 0.8 ± 0.07 × 104 in M. tb 

infected TFfl/fl mouse lungs (p=0.01; Fig. 5B). Because the pro-inflammatory cytokines 

IFN-γ, IL-12, IL-17 and IL-1β plays important roles in the regulation of M. tb growth, we 

next determined the expression levels of IFN-γ, IL-12, IL-17 and IL-1β in control and M. tb 

infected TFΔ and TFfl/fl mouse lungs. After 30 days of M. tb H37Rv infection, IFN-γ and 

IL-17 levels in the lung were measured by real-time PCR in TFΔ and TFfl/fl mice. As shown 

in Fig. 5C, M. tb infected TFΔ mice had 33-fold less IFN-γ (p=0.02), 11-fold less IL-12 

(p=0.02; Fig. 5D), and 38-fold less IL-17 (p=0.003, Fig. 5E) mRNA in their lungs compared 

to M. tb infected TFfl/fl mice. However, there was no significant change in IL-1β expression 

(Fig. 5F). A similar change in cytokines expression was found 60 days after infection 

(Supporting Information Fig. 2 A to E). We also measured IFN-γ and IL-17 expression in 

the lungs of M. tb infected TFΔ and TFfl/fl mice by immunohistochemical analysis. Thirty 

days after infection, as shown in Fig. 5G, the mean H score for IFN-γ was 32.3 ± 7.6 in M. 

tb infected TFΔ mice lungs compared to 73.4 ± 12.9 in M. tb infected TFfl/fl mouse lungs 

(p=0.02; Fig. 5G). Similarly, the mean H score for IL-17 was 14.4 ± 3.7 in M. tb infected 

TFΔ mouse and 35.09 ± 7.6 in M. tb infected TFfl/fl mouse lungs (p=0.04; Fig. 5H). Sixty 

days after infection, a similar decrease in IFN-γ and IL-17 expression in the lungs of M. tb 

infected TFΔ mice was found compared to M. tb infected TFfl/fl mice (Supporting 

Information Fig. 3).

TF expression by myeloid cells regulates MMP-2 and MMP-9 mediated inflammation

The above results suggest that increased IFN-γ and IL-17 is not responsible for the 

augmented inflammation in the lungs of M. tb infected TFΔ mice. In M. tb infection, MMPs 

also plays an important role in the induction of lung inflammation [20, 21]. To determine 

whether MMP’s are responsible for augmented lung inflammation we observed in the TFΔ 

mice, we measured MMP-2 and MMP-9 expression in the lungs of infected TFΔ and TFfl/fl 

mice. Lungs from TFΔ and TFfl/fl control and M. tb infected mice were isolated, after which 

tissue sections were prepared and examined for MMP-2 and MMP-9 expression. As shown 

in Fig. 6 A and B, there was significant increase in MMP-2 and MMP-9 expression in the 

lungs of M. tb infected TFΔ mouse compared to levels in TFfl/fl mouse lungs. As shown in 

Fig. 6A, the mean H score for MMP-2 was 164.8 ± 25.9 in M. tb infected TFΔ mouse lungs 

compared to 96 ± 6.1 in M. tb infected TFfl/fl mouse lungs (p=0.04; Fig. 6A). Similarly, the 
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mean H score for MMP-9 was 206.7 ± 23.8 in M. tb infected TFΔ mouse lungs compared to 

98 ± 9.8 in M. tb infected TFfl/fl mouse lungs (p=0.005; Fig. 6B).

TF expressed by myeloid cells increases fibrin/fibrinogen deposition in M. tb infected mice

Because TF initiates coagulation, we next assessed fibrin formation in the lung samples of 

TFΔ and TFfl/fl control and M. tb infected mice. As shown in Fig. 6C, there was less 

extravascular fibrin/fibrinogen in the M. tb infected TFΔ mice compared to the M. tb 

infected TFfl/fl mice. MMPs can regulate fibrin deposition and fibrin plays an important role 

in granuloma formation and the containment of bacterial pathogens. As shown in Fig. 6C, 

the mean H score for fibrin/fibrinogen in M. tb infected TFΔ mice was 70.2 ± 14.4 compared 

to 145.1 ± 18.8 in M. tb infected TFfl/fl mice (p=0.01).

TF regulates M. tb growth and inflammatory responses in human MDMs

To broach the relevance of the above findings to human M. tb infection, we examined TF 

expression in CD14+ monocytes in response to M. tb. Human PBMC were cultured with or 

without γ-irradiated M. tb (10 µg/ml) and the expression of TF was measured by intracellular 

staining. As shown in Fig. 7A, γ-irradiated M. tb significantly induced TF expression in 

CD14+ monocytes compared to control monocytes (13.69 ± 1.6 %vs. 0.09 ± 0.01 %, 

p=0.0006). As a control, we measured TNF-α production in CD14+ monocytes (11.4 ± 0.76 

% vs. 0.23 ± 0.03 %, p=0.0006, Fig. 7B). The gating strategy is shown in Supporting 

Information Fig. 4. We also examined the expression of TF by M. tb infected human MDMs. 

As shown in Fig. 7D and as anticipated, M. tb infection significantly upregulated TF 

expression by MDMs compared to control MDMs (4.5 ± 1.9-fold, p=0.03). To determine the 

role of TF in IL-10 production, we next silenced TF expression in MDM and infected with 

M. tb and after 72 h, IL-10 levels in the culture supernatants were analyzed by ELISA. TF 

siRNA inhibited TF expression by 70% (Fig. 7D). As shown in Fig. 7E, M. tb infection 

induced IL-10 production from 14.10 ± 1.591 pg/ml to 117.3 ± 13.94 pg/ml. TF siRNA 

enhanced IL-10 production by 2 fold compared to control siRNA (149.9 ± 15.69 vs. 89.59 ± 

13.11 pg/ml, p=0.02, Fig. 7E). Similarly, TF siRNA enhanced c-Maf expression by M. tb 

infected MDMs (5.6 ± 1.2-fold vs 1.9 ± 0.8-fold, p=0.03, Fig. 7F). Compared to the control 

siRNA, the TF siRNA inhibited apoptosis (3.8 ± 1.2 % vs. 1.6 ± 0.6 %, p=0.006, Fig. 7G) 

and disrupted the mitochondrial membrane potential in M. tb infected MDMs (21.4 ± 3.7 % 

vs 11.1 ± 3.5%, p=0.002, Fig. 7H). We also determined the effect of TF siRNA on M. tb 

growth in MDMs. In 3 independent experiments, CFU in TF siRNA transfected MDMs 

were 2 fold higher than control siRNA transfected MDMs (p=0.03; Fig. 7H). In contrast to 

the above findings, IL-10 siRNA enhanced apoptosis in M. tb infected MDMs (p= 0.004, 

Fig. 7G) and reduced M. tb growth (p= 0.03, Fig. 7I).

Discussion

In the current study, we found that TF expressed by macrophages regulates M. tb growth 

and, dissemination in addition of inflammation, providing the evidence that TF contributes 

to effective immunity against this intracellular pathogen. Our studies also demonstrate that 

deficiency of TF in myeloid cells polarizes macrophages to a more towards M2 like 

phenotype. TF expression in M. tb infected wild type mice correlated with bacterial burden. 
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Lack of TF expression by myeloid cells enhanced the bacterial burden in the lungs and other 

lymphoid organs in M. tb infected mice and TF deficient macrophages were more 

susceptible to M. tb infection. TF mediated growth inhibition involved the inhibition of 

IL-10 production and the enhancement of lung macrophage apoptosis. In M. tb infected 

mice, the absence of myeloid cell-produced TF reduced fibrin deposition, enhanced MMP-2 

and MMP-9 mediated inflammation in the lungs and caused dissemination of disease. TF 

siRNA reduced apoptosis and enhanced IL-10 production and M. tb growth in human 

MDMs.

TF is an integral membrane glycoprotein that initiates blood coagulation and provides 

additional protection to vital organs such as the brain, lungs and heart from mechanical 

injury [3, 5, 6]. Excessive TF production has been observed in several disease conditions 

such as cardiovascular diseases, cancers, diabetes, and obesity [3–5]. TF has also been 

implicated in angiogenesis, wound repair, embryonic development and innate immune 

responses to pathogens [6, 8, 22, 23]. TF overexpression has likewise been observed in 

bacterial, viral, or parasitic infection [8]. Recent studies with low TF expressing mice have 

revealed reduced coagulation, inflammation, and mortality in these mice upon the 

administration of high-dose LPS [8, 24]. A recombinant human TF pathway inhibitor exerts 

anticoagulant, anti-inflammatory and antimicrobial effects in a model of murine 

pneumococcal pneumonia [25], suggesting an important role for TF in infections. A 

deficiency of TF in hematopoietic cells was associated with reduced LPS-induced 

coagulation, inflammation, and mortality, which suggests that hematopoietic cells are the 

major pathologic site of TF expression during endotoxemia [24, 26]. In contrast to the above 

acute bacterial infections, M. tb infected transgenic mice expressing human TF, at either 

very low levels (low TF) or near to the level of wild-type mice (HTF) were able to control 

M. tb infection and dissemination with comparable efficiency [11]. However, TF in lung 

tissues was 100-fold lower in the low TF mice compared to the HTF mice, whereas M. tb 

infected bone marrow-derived macrophages from the low TF mice expressed ∼30% the TF 

activity of that was observed in M. tb infected bone marrow-derived macrophages from HTF 

mice. These results suggest TF expression was insufficiently reduction of in macrophages in 

this model to impact M. tb infection [11]. In the current study, we deleted the TF gene in 

myeloid cells of mice and infected them with M. tb. We found that TF expressed by myeloid 

cells regulates bacterial growth and dissemination in addition to inflammation during M. tb 

infection. We also found TF siRNA inhibits M. tb growth in human MDMs.

We found that lack of TF expression by myeloid cells enhances IL-10 production in 

response to M. tb, which suggests that TF may regulate IL-10 production in myeloid cells 

via c-Maf during M. tb infection. IL-10 is an anti-inflammatory cytokine that is produced 

mainly by myeloid cells and T-cells [27–31]. IL-10 production inhibits protective immune 

responses and enhances susceptibility to M. tb and other intracellular pathogen infections 

[12, 32, 33]. IL-10 also inhibits various pathways that are essential for the production of pro-

inflammatory cytokines such as TNF-α and anti-microbial mechanisms of myeloid cells 

which are both essential to controlling M. tb growth [34, 35]. In addition, IL-10 inhibits TF 

mRNA and protein expression and reduces TF levels in circulation, but the effects of TF on 

IL-10 production have not previously been described [36]. In the current study, we found 
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that M. tb-infected macrophages from TFΔ and TF siRNA-transfected M. tb-infected human 

MDMs expressed more c-Maf, produced more IL-10, were less apoptotic and were unable to 

restrict M. tb growth compared to control macrophages. Previously we found that the 

transcription factor c-Maf enhances IL-10 production to regulate the growth of M. tb H37Rv 

in subpopulations of human MDMs [13]. In the current study we found that lack of TF 

expression enhanced c-Maf expression and IL-10 production. c-Maf is associated with the 

differentiation of monocytes into macrophages [37]. In the T-cell response to infection, c-

Maf is a master regulator of Th2 responses, inducing the production of IL-10, IL-4 and 

IL-21 by binding to a c-Maf response element in the promoter regions of their encoding 

genes [38–43]. Bacterial adenylate cyclase toxins increase c-Maf expression and the 

expansion of Th2 cells [44]. Our findings demonstrate that in the absence of TF expression, 

pathogens can modulate c-Maf expression in mononuclear phagocytes to enhance bacterial 

growth. Alveolar macrophages are the first cells to interface with M. tb and our study 

suggests that during the early stages of M. tb infection, inflammatory responses mediated by 

TF inhibit c-Maf expression and IL-10 production. These interactions effectively control M. 

tb infection. Additional studies are needed to understand the specific TF mediated signaling 

pathways that regulate c-Maf expression.

Activated macrophages are classified as M1 and M2 phenotype based on the surface 

receptor they express, the chemokines and cytokines they produce, and their function. M1 

macrophages are classically activated macrophages and are pro-inflammatory. In contrast 

M2 macrophages are alternatively activated and are anti-inflammatory [45–47]. We found 

an increased number of foamy M2 phenotype like macrophages (distinguished by their 

increased expression of IL-10, Arg1 and CD163 and reduced expression of iNOS) in the 

lungs of M. tb infected TFΔ mice lungs compared to M. tb infected TFfl/fl mice. The M. tb 

pathogen promotes transition of macrophages towards an M2 phenotype to evade host 

immune responses [48–50]. Our current findings have demonstrated that TF plays an 

important role in preventing M. tb induced macrophage conversion to an M2 like phenotype. 

It is not known if TF drives the macrophage phenotype towards the pro-inflammatory M1 

phenotype in M. tb infection. Wingless-type MMTV integration site family member 6 

(Wnt6) signaling during an M. tb infection disrupts the inflammatory response by 

macrophages in granulomatous lesions in the lungs, driving M2 like polarization [49], and 

we speculate that TF may inhibit some of these signaling pathways to prevent M2 

polarization during M. tb infection.

M. tb-infected macrophages undergo apoptosis to prevent the spread of infection and to 

eliminate the pathogen [51–54]. IL-10 inhibits the apoptosis of M. tb infected murine and 

human macrophages [34]. M. tb-infected TFΔ mice have more foamy IL-10+ macrophages 

in their lung lesions (Fig. 3) and these are known to be less apoptotic [14–16]. We found that 

lack of TF expression in M. tb-infected human MDMs and mouse macrophages caused 

higher MMP levels and reduced apoptosis. We also found that IL-10 siRNA enhanced the 

loss of ΔΨm and apoptosis in M. tb infected human MDMs. Endogenous IL-10 is known to 

prevent apoptosis in macrophages that are infected with bacteria and down regulate reactive 

oxygen species production which causes the loss of MMP [55–57]. Loss of ΔΨm is one of 

the mechanisms involved in apoptosis, and it leads to the release of cytochrome c and 
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enhanced caspase activity during apoptosis [17, 58, 59]. In the current study, we found that a 

deficiency of TF in myeloid cells was associated with enhanced IL-10 production, a 

reduction in the loss of ΔΨm, reduced apoptosis and increased M. tb growth in macrophages. 

TF is known to be involved in cell survival signaling, but the outcome of this signaling 

depends on the cell type and the signaling pathways involved. TF inhibits apoptosis in 

cancer cells and various signaling pathways such as the PI3-kinase/c-Akt pathway and Jak/

STAT5 pathways are involved in the TF mediated inhibition of apoptosis [6, 60–62]. In 

contrast, TF in HaCaT cells enhances apoptosis through PAR-2-mediated phosphorylation 

of the cAMP response-element binding protein [3, 63]. In the current study, we found that 

TF siRNA inhibits apoptosis of M. tb-infected human MDMs and that macrophages from M. 

tb-infected TFΔ mice are less apoptotic than M. tb-infected TFfl/fl macrophages. Combined, 

these results demonstrate that TF has a pro-apoptotic role in M. tb infection by which it 

controls bacterial growth and the spread of infection. Our results suggest that TF enhances 

apoptosis in M. tb-infected macrophages by reducing IL-10 production and acting through 

mitochondrial signaling pathways.

We found increased inflammatory lesions (Fig. 3) and CD4+ and CD8+ cells in the lungs of 

M. tb infected TFΔ mouse lungs compared to M. tb infected TFfl/fl mice (Fig. 5). Real-time 

PCR analyses demonstrated that this increased inflammation was not due to increased IFN-γ 

or IL-17 production (Fig. 5). MMPs, mainly MMP-2 and MMP-9, are key mediators of 

inflammation in pulmonary tuberculosis infection [20, 64]. Immunohistochemical analysis 

of M. tb infected TFΔ mouse lungs indicated that MMP-2 and MMP-9 mediated 

inflammation is responsible for the increased inflammation in M. tb infected TFΔ mouse 

lungs (Fig. 6). MMPs are proteases that degrade extracellular matrix macromolecules, 

including the structural fibrils of the lung [65]. Extracellular matrix degradation is critical 

for the successful establishment of infection by M. tb [20]. In a zebrafish model of M. 

marinum infection, a lack of MMP-9 expression led to small granulomas and decreased 

dissemination [66]. Tuberculosis patients exhibit abundant MMP-9 and M. tb-infected 

murine macrophages produce MMP-9 [67–69]. In M. tb infection, multiple cellular 

pathways are involved in MMP production [20]. In many disease conditions, there is a direct 

correlation between TF expression and the expression of MMPs expression, but we are 

aware of no previous study that has focused on the interactions between TF and MMPs 

during the early stages of infection. It is not clear how TF regulates MMP-2 and MMP-9 

expression, but one possibility is that the lack of TF expression in M. tb infected 

macrophages leads to transcriptional deregulation or decreased production of endogenous 

inhibitors, such as tissue inhibitors of metalloproteinases (TIMPs), and this may be 

responsible for increased MMP-2 and MMP-9 expression [65]. Another possibility is that 

the lack of TF and the increased M. tb growth in macrophages leads to excess production of 

M. tb proteins such as ESAT-6, which are known to induce MMP-9 expression in epithelial 

cells [66]. While we have not determined the source for MMP-2 and MMP-9, one potential 

explanation is that lack of TF expression can lead to enhanced infiltration by neutrophils, 

which are known to produce MMP-2 and MMP-9 [70, 71]. Our study suggests that, during 

the early phases of the immune response to intracellular pathogens, TF may inhibit the 

excessive inflammation normally mediated by MMPs to prevent the dissemination of the 

pathogen and to favor the development of a Th1 response.
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The interactions between TF and clotting factor VII/VIIa (FVIIa) lead to the generation of 

thrombin which converts fibrinogen to fibrin [72]. In acute lung injury and pneumonia, 

blockade of TF expression inhibits fibrin deposition [8, 73]. Fibrin deposition in the lung is 

essential for cell trafficking and serves as a structural barrier to various infections [65]. 

Binding of FVIIa to TF augments the pro-inflammatory functions of macrophages and 

enhances the production of reactive oxygen species and the expression of major 

histocompatibility complex class II and cell adhesion molecules [74]. Mice expressing low 

levels of TF produce less IL-6 and survive for longer periods of time in response to 

endotoxins compared to control mice [75]. In a number of infections, TF appears to play be 

a significant outcome determinant. In an E. coli infection, blocking the TF-FVIIa complex 

decreases intra-alveolar inflammation and fibrin deposition, indicating its essential role in 

lung injury [73]. Mice infected with Streptococcus pneumoniae had increased TF expression 

and fibrin deposits in their lungs with increased thrombin-antithrombin complexes [76]. The 

containment and resolution of Plasmodium falciparum placental infection was associated 

with TF mediated inflammation, and fibrin deposition [77]. In Yersinia pestis infection, 

fibrin is an essential component of T cell–mediated defense [78] and infected mice 

expressing a low level of TF had increased mortality similar to that of fibrinogen-deficient 

mice [79]. Similar to our study, in Yersinia enterocolitica infection, low TF expression 

enhances IL-10 mRNA in mice [79]. In contrast, in Plasmodium falciparum infected 

placentas macrophages accumulate and express TF which causes the accumulation of fibrin 

and retarded placental growth and low birth weight [77]. In a similar vein, tuberculosis 

granulomas are surrounded by fibrin and fibrinogen, which are important for the 

organization and formation of granulomatous tissue [79, 80]. As expected, we observed 

decreased levels of fibrin deposition in the lungs of M. tb infected TFΔ mice and reduced 

dissemination of the disease. We also observed an increased production of MMP-2 and 

MMP-9 which are known to degrade fibrin [65]. Our results suggest that increased 

production of MMP-2 and MMP-9 may contribute to reduced fibrin deposition in the lungs 

of M. tb infected TF-deficient mice, apart from impaired TF-mediated initiation of local 

coagulation.

In summary, by using TFΔ mice, as a murine model of M. tb infection and human MDMs, 

we provide the first evidence that TF produced by macrophages contributes to effective 

immunity against M. tb infection. The further delineation of the mechanisms by which TF 

optimizes immune responses against M. tb may facilitate the development of vaccines 

against this organism and other intracellular pathogens. Our results implicate TF in the 

pathogenesis of organism containment and in the progression of early lung injury following 

pulmonary M. tb infection.

Materials and Methods

Animals

Specific-pathogen-free 4- to 6-week-old female wild-type C57BL/6 mice were purchased 

from the Jackson Laboratory and housed at the animal facility of University of Texas Health 

Science Center at Tyler. Mice lacking the TF gene in myeloid cells (TFΔ mice) and their 

respective controls (TFfl/fl) were generated as described previously [81]. All animal 
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experiments were approved by The Institutional Animal Care and Use Committee of the 

University of Texas Health Science Center at Tyler.

Blood donors

Blood was obtained from 22 healthy donors. All studies were approved by the Institutional 

Review Board of the University of Texas Health Science Center at Tyler and written 

informed consent was provided by all study participants. For the studies performed at the 

NIH laboratories, peripheral blood mononuclear cells were isolated from blood obtained 

from the NIH clinical center blood bank.

Antibodies and other reagents

FITC anti-CD4 (clone GK1.5, Biolegend), FITC anti-CD8 (Clone 53–6.7, Biolegend), FITC 

anti-CD14 (Clone 61D3, eBiosciences), qdot605 anti-CD14 (clone Tük4, Invitrogen), V450 

anti-CD2 (clone RPA-2.10, eBioscience), anti-CD3 (clone UCHT1, eBioscience), anti-

CD19 (clone HIB19, eBioscience), anti-CD20 (clone 2H7, eBioscience), anti-CD56 (clone 

B159, eBioscience), PE-Cy7 anti-CD16 (clone 3G8, Biolegend), APC-Cy7 anti-HLA-DR 

(clone L243, BD biosciences), PE anti-CD142/TF (clone HTF-1,eBioscience) and PerCP-

Cy5.5 anti-TNF-α (clone MAb11, eBioscience) were used for flow cytometry, γ-irradiated 

M. tb H37Rv and Ag85a was obtained from BEI Resources.

Isolation of human monocytes and mouse peritoneal and alveolar macrophages

Human PBMC were isolated by differential centrifugation using Ficoll-Paque (Amersham 

Pharmacia Biotech). CD14+ monocytes were isolated with magnetic beads conjugated to 

anti-CD14 (Miltenyi Biotec), and positively selected cells were >97% CD14+ as measured 

by flow cytometry. Mouse bronchoalveolar lavage (BAL) cells and peritoneal exudate 

macrophages (PEMs) were isolated as previously described [82, 83].

Infection of macrophages with M. tuberculosis H37Rv

Human CD14+ monocytes (1.5 × 106/well) were plated in 12-well plates (BD Biosciences 

Labware) in 1 ml of antibiotic-free RPMI 1640 containing 10% heat-inactivated human 

serum. Monocytes were incubated at 37°C in a humidified 5% CO2 atmosphere for 4 days to 

allow differentiation to macrophages (MDMs). Mouse PEMs or alveolar macrophages were 

plated in 12-well plates immediately after isolation and washed after 90 minutes to remove 

non-adherent cells. Human MDMs or mouse PEMs or alveolar macrophages were infected 

with M. tuberculosis H37Rv at an multiplicity of infection (MOI) of 1:2.5, (2.5 M. tb to one 

MDM) as previously described [84]. This MOI was selected based on the viability of MDMs 

at different MOIs for up to 7 days post infection. More than 90% of the MDMs were viable 

at this MOI. Cells were incubated for 2 h at 37°C in a humidified 5% CO2 atmosphere, 

washed to remove extracellular bacilli, and cultured in RPMI 1640 containing 10% heat-

inactivated human serum.

To quantify the intracellular growth of M. tb H37Rv, infected macrophages were cultured 

for 5 or 7 d, after which the supernatant was aspirated and the macrophages were lysed. 

Bacterial suspensions in cell lysates were ultrasonically dispersed, serially diluted, and 

plated in triplicate on 7H10 agar. The number of colonies was counted after 3 weeks.

Venkatasubramanian et al. Page 11

Eur J Immunol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stimulation of human PBMC with γ-irradiated M. tb

Human PBMC (1 × 106/well) were plated in 96-well plates in 200µl of antibiotic-free RPMI 

1640 containing with 10% heat inactivated human AB serum and 5µg/ml brefeldin-A 

(Sigma-Aldrich, St. Louis, MO) in the absence or presence of 100 µg/ml of γ-irradiated M. 

tb for 6 hours at 37°C in 5% CO2. Cells were washed and stained with Live/Dead fixable 

blue dead cell stain (Life Technologies) for 20 minutes at room temperature (RT) then 

washed with 1% PBS/BSA and stained with antibodies for extracellular surface markers for 

1h at RT. Cells were then fixed and permeabilized (Foxp3/ Transcription Factor Staining 

Buffer Set, eBioscience) overnight at 4°C. After permeabilization, cells were stained for 

intracellular markers for 1hr at RT. Data were acquired on a BD LSR II flow cytometer (BD 

Biosciences). All compensation and gating analysis were performed using FlowJo 9.6.3 

(TreeStar, Ashland, OR).

Aerosol infection of mice with M. tb H37Rv

Before infecting mice with M. tb H37Rv, bacteria were grown in liquid medium to mid-log 

phase and then frozen in aliquots at −70°C. Bacterial counts were determined by plating on 

7H10 agar, supplemented with Oleic Albumin Dextrose Catalase (OADC). For infection, 

bacterial stocks were diluted in 10 ml of normal saline to 0.5 × 106 CFU; colony forming 

units/ml, 1 × 106 CFU/ml, 2 × 106 CFU/ml and 4 × 106 CFU/ml and placed in a nebulizer in 

an aerosol exposure chamber, that was made to order by the University of Wisconsin. In 

preliminary studies, groups of three mice were exposed to 15 min of aerosol at each 

concentration, and after 24 h, mice were sacrificed and homogenized lungs were plated on 

7H11 agar plates supplemented with OADC. CFU were counted after 14–22 days of 

incubation at 37°C [85]. For further studies, we selected the concentration that deposited 

∼75–100 bacteria in the lungs during aerosol infection.

Real-time PCR for quantification

Total RNA was extracted from MDMs, PEMs or lung cells as described previously [13]. 

Total RNA was reverse transcribed, using a Clone AMV First-Strand cDNA synthesis kit 

(Life Technologies). Real-time PCR was performed using the QuantiTect SYBR Green PCR 

kit (Qiagen) in a sealed 96-well microtiter plate (Applied Biosystems) on a 

spectrofluorometric thermal cycler (7700 PRISM; Applied Biosystems). PCR reactions were 

performed in triplicate as follows: 95°C for 10 min, and 45 cycles of 95°C for 15 s, 60°C for 

30 s, and 72°C for 30 s. All samples were normalized to the amount of β-actin/GAPDH 

transcript present in each sample.

The primers that were used in the study are listed in Table I.

siRNA transfection

Human MDMs were transfected with siRNA for TF or control siRNA, using transfection 

reagents (all from Santa Cruz Biotechnology). The efficiency of siRNA knockdown was 

measured by real-time PCR of TF mRNA expression. Briefly, 106 CD14+ MDMs were 

resuspended in 500 µl of transfection medium, and transfected with siRNA (6 pmoles). After 

6 h, an additional 250 µl of 2X RPMI complete medium was added and cells were cultured 
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overnight in a 24-well plate. The next day MDMs were infected with H37Rv, as outlined 

above, and after 3 days culture supernatants were collected and IL-10 production was 

measured by ELISA and apoptosis was determined as described below.

Measurement of apoptosis of M. tb- infected macrophages

Apoptosis of M. tb infected mouse PEMs, mouse lung alveolar cells and human MDMs 

transfected with a TF siRNA was measured using an APO-Direct TUNEL kit. Briefly, 

human MDMs and mouse PEMs were infected with M. tb H37Rv at a MOI of 2.5:1. Some 

MDMs were transfected with TF siRNA or control siRNA. After 72 h, cells were isolated 

using trypsin-EDTA and fixed in 1% paraformaldehyde and 70% ethanol in PBS. Freshly 

isolated alveolar macrophages from M. tb infected mouse were directly fixed in 1% 

paraformaldehyde and 70% ethanol in PBS. After an overnight incubation at −20°C, cells 

were washed in washing buffer, resuspended in 50 µl of DNA labelling solution (provided in 

the kit) and incubated at 37°C. After 60 minutes, cells were washed twice in rinsing buffer 

and 500 ul of propidium iodide/RNAse A solution was then added followed by incubation in 

the dark. After 30 minutes, cells were analyzed by flow cytometry [86].

Immunohistochemistry

Immunostaining of lung sections using antibodies against IL-17 (Bioss), IFN-γ (Bioss), 

IL-10 (Abcam), MMP-2 (Abcam), MMP-9 (Origene) and fibrin/fibrinogen (Abcam) on 

paraffin fixed thin sections was performed following the manufacturer’s instructions as 

previously described with some modifications [87, 88]. Unstained sections of the formalin 

fixed lung tissue from paraffin blocks were first deparaffinized and then subjected to antigen 

retrieval using a citrate buffer at 95°C as previously described [87, 88]. Endogenous 

peroxidase was blocked with 3% H2O2 in methanol. Slides were incubated in 3% BSA in 

TBS for two min after which primary antibodies were added at predetermined dilutions in 

TBS-Tween + 1% BSA for 1 hr at 25 °C, and then washed in TBS-T for 15 min 3X. IL-10, 

MMP 2 and 9 and fibrin (fibrinogen) antigen were detected using immunohistochemistry 

(IHC) and the Fast Red (BioGenex) chromogen as previously described. The same sections 

were also used for H & E staining to identify foamy macrophages. Two investigators 

independently assessed the immunohistochemical readouts using morphometric analyses, as 

we have previously described [89]. The Histology scores (H-scores) were performed 

according to the method described by Pirker et al [90]. Briefly, the percentage of cells with 

different staining intensities were determined by visual assessment and assigned a score for 

staining intensity (1+ for light staining, 2+ for intermediate staining and 3+ for dark 

staining) using an immunohistochemistry (IHC) ImageJ profiler. The H score was calculated 

using the formula 1 × (% of 1 + cells) + 2 × (% of 2 + cells) + 3 × (% of 3 + cells). The 

percentage of IL-10 positive cells was assessed in ten high-power fields (hpf) per lung.

Measurement of mitochondrial membrane potential (ΔΨm)

The mitochondrial membrane potential (ΔΨm) of the above described cultured cells was 

measured using a kit (Trevigen) according to manufacturer’s instructions. The kit uses a 

unique cationic dye (5,5’6,6’-tetrachloro-1,1’,3, 3’-tetraethylbenzimidazolyl- carbocyanine 

iodide) to detect the loss of ΔΨm. The dye readily enters cells and fluoresces brightly red in 
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its multimeric form within healthy mitochondria. In apoptotic cells, the mitochondrial 

membrane potential collapses, and the dye cannot accumulate within the mitochondria as 

measured by flow cytometry.

Statistical analysis

Results are shown as the mean ± SE. The Student’s t-test was used to compare two sets of 

data and ANOVA followed by a Bonferroni test was used to compare multiple variable 

groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. TF expression and bacterial burden in M. tb infected wild type C57BL/6 mice
C57BL/6 mice were infected with ∼75–100 CFU of M. tb H37Rv, which was delivered by 

aerosol. At weekly intervals, for up to 4 weeks and at the 8th week, mice in each group were 

sacrificed, and lung bacterial burden and TF expression were determined by real-time PCR. 

(A) Bacterial burden in lungs. The results are shown as log10 CFU per lung. All data shown 

as the mean ± SEM and are representative of three independent experiments. Statistical 

analysis was performed using Student’s t-test for bacterial counts. (B) TF expression in 

lungs. TF gene expression was assessed by real-time PCR using the SYBR Green system 

and the ΔΔCT method for relative quantification. Fold changes in gene expression relative to 

uninfected mice lung are reported. All data are shown as the mean ± SEM and are 

representative of three independent experiments. Statistical analysis was performed using 

Student’s t-test. *p<0.05.
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Fig. 2. TF expression by myeloid cells is essential for the optimal control of M. tb growth
(A to D) TFΔ mice and TFfl/fl mice both C57BL/6 background were infected with ∼75–100 

CFU of M. tb H37Rv delivered by aerosol. Thirty days after infection, lung, liver, spleen 

and MLN cells were isolated and bacterial burden was determined. (A) Lungs (B) Spleen 

(C) MLN and (D) Liver. The results are shown in actual bacterial counts. All data shown as 

the mean ± SEM and are representative of three independent experiments. Statistical 

analysis was performed using Student’s t-test for bacterial counts. (E) PEMs from TFfl/fl and 

TFΔ mice were infected with H37Rv at a MOI of 1:2.5 (2.5 M. tb to one PEM). After 2 h, 

MDMs were washed to remove extracellular bacteria and were cultured. After 2 h and 5 

days, CFU were determined. Five days data are shown as the mean ± SEM are 
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representative of three independent experiments. Statistical analysis was performed using 

Student’s t-test.
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Fig. 3. Immunohistochemical analysis of M. tb infected TFΔ and TFfl/fl mice lungs
TFΔ and TFfl/fl mice were infected with ∼75–100 CFU of M. tb H37Rv delivered by 

aerosol. After 30 days, lungs from TFΔ and wild type controls and M. tb infected mice were 

isolated, formalin fixed and paraffin-embedded, after which tissue sections were prepared 

and hematoxylin and eosin staining or Immunohistochemical analysis was performed. (A) 
Histological analysis. Arrow indicates inflammatory regions. Images of multiple fields were 

obtained at 10X magnification (bar represents 200µm) (B) Foamy macrophages. Arrow 

indicates fomay macrophages surrounding a lymphocytic core structure. Images of multiple 

fields were obtained at 20X magnification (bar represents 100µm). C. Immunohistochemical 

analysis for IL-10+ foamy macrophages. Photographs are representative of staining patterns. 

Images of multiple fields were obtained at 20X magnification (bar represents 100µm). All 

data are shown as the mean ± SEM and are representative of two independent experiment. 

Statistical analysis was performed using Student’s t-test.
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Fig. 4. M. tb infected TFΔ mice lung macrophages produce more IL-10 and are less apoptotic and 
more polarize towards M2 like phenotype
TFΔ and wild type mice were infected with ∼75–100 CFU of M. tb H37Rv delivered by 

aerosol. Thirty days after infection in lungs (A) IL-10, (B) iNOS, (C) Arg1 and (D) c-Maf 

mRNA expression using real-time PCR was determined. Gene expression was assessed by 

real-time PCR using the SYBR Green system and the ΔΔCT method for relative 

quantification. Fold changes in gene expression relative to control uninfected TFΔ and TFfl/fl 

mice are shown. (E) Lung cells were isolated, and apoptotic cells were identified using a 

TUNEL assay. (F) Lung cells were isolated, and disrupted ΔΨm was determined by using 

flow cytometry with a kit obtained from Trevigen. All data are shown as mean ± SEM and 

are representative of five independent experiments. (G to L) PEMs from uninfected TFΔ and 

TFfl/fl mice were isolated and infected with M. tb H37Rv as mentioned in methods section. 

After 3 days, culture supernatants and cell were collected for RNA isolation. (G) IL-10 

levels were measured by ELISA. (H) iNOS, (I) Arg1 and (J) CD163 mRNA expression 

levels were determined using real-time PCR. Gene expression was assessed by real-time 

PCR using the SYBR Green system and the ΔΔCT method for relative quantification. Fold 
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changes in gene expression relative to control uninfected TFΔ and TFfl/fl mice PEMs was 

shown. (F) Apoptotic cells were identified using a TUNEL assay. (G) Disrupted ΔΨm was 

determined by flow cytometry using a kit obtained from Trevigen. All statistical analysis 

was performed using Student’s t-test. All data are shown as the mean ± SEM and are 

representative of five independent experiments.
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Fig. 5. T-cell numbers and cytokine production by M. tb infected TFΔ and TFfl/fl mice
TFΔ and TFfl/fl mice were infected with ∼75–100 CFU of M. tb H37Rv delivered by 

aerosol. Thirty days after infection (A and B) CD4+ and CD8+ cell numbers were 

determined by flowcytometry. Statistical analysis was performed using the Student’s t-test. 

(C to F) IFN-γ, IL-12, IL-17 and IL-1β mRNA expression levels were determined using 

real-time PCR. Mean values, p values and SEs are shown. Gene expression was assessed by 

real-time PCR using the SYBR Green system and the ΔΔCT method for relative 

quantification. Fold changes in gene expression relative to uninfected TFΔ and TFfl/fl mice 

lungs are shown. Statistical analysis was performed using the Student’s t-test. All data are 

shown as the mean ± SEM and are representative of three independent experiment. (G and 
H). IFN-γ and IL-17 expression was determined by immunohistochemical analysis. 

Photographs are representative of the staining patterns of multiple fields and were obtained 

at 20X magnification (bar represents 100µm). All data are shown as mean ± SEM and are 

representative of three independent experiment. Statistical analysis was performed using 

Student’s t-test.
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Fig. 6. Expression of MMP-2 and MMP-9 and Fibrin/Fibrinogen deposition in M. tb infected 
TFΔ and TFfl/fl mice
TFΔ and TFfl/fl mice were infected with ∼75–100 CFU of M. tb H37Rv delivered by 

aerosol. After 30 days lungs from M. tb infected TFΔ and TFfl/fl mice were isolated and 

tissue sections were prepared after which MMP-2, MMP-9 and fibrin/fibrinogen staining 

was performed. (A) MMP-2 expression. (B) MMP-9 expression. (C) Fibrin/fibrinogen 

deposition. Photographs are representative of staining patterns and were taken at 40X 

magnification. (bar represents 50µm). All data are shown as the mean ± SEM and are 

representative of three independent experiment. Statistical analysis was performed using the 

Student’s t-test.
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Fig. 7. TF regulates IL-10 production, apoptosis and M. tb growth in human MDMs
Expression of TF and TNF-α by CD14+ cells. PBMC from healthy donors were cultured 

with or without γ-irradiated M. tb. After 6 h CD14+ monocytes (HLADR+CD2-CD3-CD19-

CD20-CD56-) were analyzed for the expression of (A) TF and (B) TNF-α using flow 

cytometry. (C) A representative flow cytometry plot is shown. All data are representative of 

the mean ± SEM of seven individual donors acquired in seven independent experiments 

were shown. Statistical analysis was performed using the one-way ANOVA followed by 

Bonferroni correction. MDMs from healthy donors were infected with H37Rv at a MOI of 
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1:2.5 (2.5 M. tb to one MDM). After 2 h, MDMs were washed to remove extracellular 

bacteria. Some cells were transfected with siRNA for TF or IL-10 (in some experiments) or 

scrambled siRNA. After 72 h, (D) TF expression was determined using real-time PCR. Gene 

expression was assessed by real-time PCR using the SYBR Green system and the ΔΔCT 

method for relative quantification. Fold changes in gene expression relative to uninfected 

MDMs are shown. All data are shown as the mean ± SEM of four individual donor sets and 

are representative of four independent experiments. Statistical analysis was performed using 

Student’s t-test. (E) Culture supernatants were collected from five donor sets, and IL-10 

levels were measured by ELISA. Data are shown as the median (horizontal line), and 

statistical analysis was performed using one-way ANOVA followed by Bonferroni 

correction. (F) c-Maf expression was determined using real-time PCR. Gene expression was 

assessed by real-time PCR using the SYBR Green system and the ΔΔCT method for relative 

quantification. Fold changes in gene expression relative to uninfected MDMs are shown. 

Statistical analysis was performed using the Student’s t-test. (G) Apoptotic cells were 

determined using TUNEL assay. (H) Disrupted ΔΨm was determined by flow cytometry 

using a kit from Trevigen. All data are shown as the mean ± SEM and are representative of 

three independent experiments. Statistical analysis was performed using the Student’s t-test. 

(I) After 7 days, CFU were measured. The results are shown as log10 CFU per well. All data 

are shown as mean ± SEM and are representative of the five independent experiments. 

Statistical analysis was performed using Student’s t-test for bacterial counts.
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Table I

List of primers used in the study

S.No Gene name Human Primer Sequences

1. GAPDH Forward: GCCATCAATGACCCCTTCATT
Reverse: TTGACGGTGCCATGGAATTT

2. Tissue Factor Forward: CAGAGTTCACACCTTACCTGGAG
Reverse: GTTGTTCCTTCTGACTAAAGTCCG

3. IL-10 Forward: TCTCCGAGATGCCTTCAGCAGA
Reverse: TCAGACAAGGCTTGGCAACCCA

4 c-MAF Forward: TGCACTTCGACGACCGCTTCTCGG
Reverse: AAGGTGGCTAGCTGGAATCGCG

S.No Gene name Mouse Primer Sequences

1. β-actin Forward: CCTTCAACACCCAGCCATGT
Reverse: TGTGGACCACCAGAGGCATAC

2. Tissue Factor Forward: CATGGAGACGGAGACCAACT
Reverse: CCATCTTGTTCAAACTGCTGA

3. IFN-γ Forward: TCAAGTGGCATAGATGTGGAAGAA
Reverse: TGGCTCTGCAGGATTTTCATG

4. IL-10 Forward: GGTTGCCAAGCCTTATCGGA
Reverse: ACCTGCTCCACTGCCTTGCT

5. IL-17 Forward: CTCCAGAAGGCCCTCAGACTAC
Reverse: AGCTTTCCCTCCGCATTGACACAG

6. c-MAF Forward: AAATACGAGAAGTTGGTGAGCAA
Reverse: CGGGAGAGGAAGGGTTGTC

7 CD-163 Forward: TCCACACGTCCAGAACAGTC
Reverse: CCTTGGAAACAGAGACAGGC

8 iNOS Forward: AACGGAGAACGTTGGATTTG
Reverse: CAGCACAAGGGGTTTTCTTC

9 Arg1 Forward: TTGCGAGACGTAGACCCTGG
Reverse: CAAAGCTCAGGTGAATCGGC

10 IL-12 Forward: GGAAGCACGGCAGCAGAATAA
Reverse: CTTGAGGGAGAAGTAGGAATG

10 IL-1β Forward: CAACCAACAAGTGATATTCTCCATG
Reverse: GATCCACACTCTCCAGCT
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