324 research outputs found

    Cardiomyocyte proliferation in zebrafish and mammals: lessons for human disease

    Get PDF
    Cardiomyocytes proliferate profusely during early development and for a brief period after birth in mammals. Within a month after birth, this proliferative capability is dramatically reduced in mammals unlike lower vertebrates where it persists into adult life. The zebrafish, for example, retains the ability to regenerate the apex of the heart following resection by a mechanism predominantly driven by cardiomyocyte proliferation. Differences in proliferative capacity of cardiomyocytes in adulthood between mammals and lower vertebrates are closely liked to ontogenetic or phylogenetic factors. Elucidation of these factors has the potential to provide enormous benefits if they lead to the development of therapeutic strategies that facilitate cardiomyocyte proliferation. In this review, we highlight the differences between Mammalian and Zebrafish cardiomyocytes, which could explain at least in part the different proliferative capacities in these two species. We discuss the advantages of the zebrafish as a model of cardiomyocyte proliferation, particularly at the embryonic stage. We also identify a number of key molecular pathways with potential to reveal key steps in switching cardiomyocytes from a quiescent to a proliferative phenotype. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-016-2404-x) contains supplementary material, which is available to authorized users

    Systolic and diastolic ventricular function in zebrafish embryos: Influence of norepenephrine, MS-222 and temperature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Zebrafish are increasingly used to study the influences of gene mutation and manipulation on cardiac development, structure and function. In this study, a video edge detection system was used to characterise, continuously, cardiac ventricle function in 2–5 days old zebrafish embryos embedded in 0.6% agar and examined under light microscopy at room temperature (22°C). Using video edge detection software (IonOptix Inc), the motion of a small region of the cardiac ventricle wall was converted to a continuous chart trace allowing analysis of wall motion amplitude (WMA) and myocardial wall velocity during systole (MWVs) and diastole (MWVd).</p> <p>Results</p> <p>Cardiac wall motion characteristics changed progressively from day 2 to 5 (WMA, 2-days, 17.6 ± 4.4 μm vs 5-days, 24.6 ± 4.7 μm, p < 0.01). MWVd was more rapid than MWVs at all developmental time points. Embryonic hearts were also assessed after increasing concentrations of norepenephrine (NE) and the anaesthetic agent MS222 (tricaine) were added to the bathing water. In response to NE, WMA increased significantly more in 4 day embryos compared with 2 day embryos (change in WMA,13.6 ± 8.2 μm vs 4.0 ± 8.8 μm, p = 0.01, respectively) while the decrease in WMA in response to MS222 was similar in both 2 and 4-day embryos. Heart rate, MWVs and MWVd were significantly higher at 28°C compared with 22°C. No differences in cardiac function were observed between AB and Golden strains.</p> <p>Conclusion</p> <p>Video edge detection appears sufficiently sensitive to detect subtle changes in diastolic and systolic cardiac function during development and changes resulting from pharmacological and environmental interventions. Such measurements could be valuable in assessment of altered cardiac function after genetic manipulation.</p

    Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart

    Get PDF
    Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart

    Live imaging of the immune response to heart injury in larval zebrafish reveals a multi-stage model of neutrophil and macrophage migration

    Get PDF
    Neutrophils and macrophages are crucial effectors and modulators of repair and regeneration following myocardial infarction, but they cannot be easily observed in vivo in mammalian models. Hence many studies have utilized larval zebrafish injury models to examine neutrophils and macrophages in their tissue of interest. However, to date the migratory patterns and ontogeny of these recruited cells is unknown. In this study, we address this need by comparing our larval zebrafish model of cardiac injury to the archetypal tail fin injury model. Our in vivo imaging allowed comprehensive mapping of neutrophil and macrophage migration from primary hematopoietic sites, to the wound. Early following injury there is an acute phase of neutrophil recruitment that is followed by sustained macrophage recruitment. Both cell types are initially recruited locally and subsequently from distal sites, primarily the caudal hematopoietic tissue (CHT). Once liberated from the CHT, some neutrophils and macrophages enter circulation, but most use abluminal vascular endothelium to crawl through the larva. In both injury models the innate immune response resolves by reverse migration, with very little apoptosis or efferocytosis of neutrophils. Furthermore, our in vivo imaging led to the finding of a novel wound responsive mpeg1+ neutrophil subset, highlighting previously unrecognized heterogeneity in neutrophils. Our study provides a detailed analysis of the modes of immune cell migration in larval zebrafish, paving the way for future studies examining tissue injury and inflammation

    Microlaser-based contractility sensing in single cardiomyocytes and whole hearts

    Get PDF
    Microscopic whispering gallery mode lasers detect minute changes in cellular refractive index inside individual cardiac cells and in live zebrafish. We show that these signals encode cardiac contractility that can be used for intravital sensing.Postprin

    Effects of Cyclin Dependent Kinase 9 inhibition on zebrafish larvae

    Get PDF
    CDK9 is a known regulator of cellular transcription, growth and proliferation. Small molecule inhibitors are currently being developed and assessed in clinical trials as anti-cancer drugs. The zebrafish embryo provides an ideal model to explore the effects of CDK9 inhibition in-vivo. This has not been adequately explored previously at the level of a whole organism. We have compared and contrasted the effects of pharmacological and molecular inhibition of CDK9 on somatic growth, apoptosis and cellular proliferation in zebrafish larvae between 0 to 120 hours post fertilisation (hpf) using flavopiridol, a selective CDK9 antagonist, and CDK9-targeting morpholino. We demonstrate that the inhibition of CDK9 diminishes cellular proliferation and increases apoptosis. Subsequently, it affects somatic growth and development of a number of key embryonic structures including the brain, heart, eye and blood vessels. For the first time, we have localized CDK9 at a subcellular level in whole-mounted larvae. This works shows, at a high-throughput level, that CDK9 clearly plays a fundamental role in early cellular growth and proliferation

    A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    Get PDF
    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments. v2 includes reviewer changes and longer literature revie

    The feasibility and acceptability of self-testing for proteinuria during pregnancy: A mixed methods approach.

    Get PDF
    OBJECTIVE: To investigate feasibility and acceptability of self-testing for proteinuria during pregnancy. STUDY DESIGN: Mixed methods approach which included: an accuracy study where pregnant women (n = 100) and healthcare professionals (n = 96) tested seven synthetic protein samples and completed a questionnaire, a feasibility study where pregnant women who were self-monitoring their blood pressure were asked to self-test for proteinuria (n = 30), and an online questionnaire about women's experiences of self-testing (n = 200). MAIN OUTCOME MEASURES: Sensitivity and specificity of testing and questionnaire results. RESULTS: There were no significant differences in the accuracy of synthetic sample testing by pregnant women (sensitivity 0.81 (95% confidence intervals (CI) 0.78-0.85), specificity 0.93 (95% CI 0.91-0.95)) and healthcare professionals: (sensitivity 0.83 (95% CI 0.79-0.86), specificity 0.92 (95% CI 0.90-0.94)). Automated readers had significantly better sensitivity (0.94 (0.91-0.97) (p ≤ .001 in each case), but worse specificity 0.78 (0.69-0.85). Similar results were gained using self-tested urine samples compared to staff-testing using a reference standard of laboratory urine protein-creatinine ratio (uPCR). Women who completed the online survey with experience of self-testing (n = 39, 20%) generally found it easy, and with support from healthcare professionals felt it improved involvement in their care and reduced anxiety. CONCLUSIONS: Self-testing for proteinuria by pregnant women had similar accuracy to healthcare professional testing and was acceptable to both groups. Self-testing of urine combined with self-monitoring of blood pressure could provide a useful adjunct to clinic-based surveillance for the detection of pre-eclampsia. Such novel strategies warrant further research
    • …
    corecore