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ABSTRACT
CDK9 is a known regulator of cellular transcription, growth and proliferation. Small molecule inhibitors are
currently being developed and assessed in clinical trials as anti-cancer drugs. The zebrafish embryo
provides an ideal model to explore the effects of CDK9 inhibition in-vivo. This has not been adequately
explored previously at the level of a whole organism. We have compared and contrasted the effects of
pharmacological and molecular inhibition of CDK9 on somatic growth, apoptosis and cellular proliferation
in zebrafish larvae between 0 to 120 hours post fertilisation (hpf) using flavopiridol, a selective CDK9
antagonist, and CDK9-targeting morpholino. We demonstrate that the inhibition of CDK9 diminishes
cellular proliferation and increases apoptosis. Subsequently, it affects somatic growth and development of
a number of key embryonic structures including the brain, heart, eye and blood vessels. For the first time,
we have localized CDK9 at a subcellular level in whole-mounted larvae.

This works shows, at a high-throughput level, that CDK9 clearly plays a fundamental role in early cellular
growth and proliferation.

KEYWORDS
CDK9; flavopiridol;
morpholino; pharmacology;
phenotype; zebrafish

Introduction

Cyclin-dependent kinase (CDK)9 is a regulatory molecule acti-
vated following binding to Cyclin T,1 forming a heterodimer
that is the core element of the positive-acting transcription
elongation factor (P-TEFb).2 In keeping with its central role
in transcription regulation,3 CDK9 has also been implicated in
abnormal cellular responses linked to cancer and HIV.4 This
has focused attention on development of new therapies target-
ing pathways linked to CDK9.

So far, several CDKs inhibitor compounds have been devel-
oped with a range of selectivity for CDK9: Flavopiridol,5 Rosco-
vitine,6 iCDK9,7 DRB,8 SNS-032,9 RGB-28614710 and
AT7515.11 Flavopiridol, Roscovitine and SNS-032 are the best
known CDK9 inhibitors tested in clinical trials, particularly as
anticancer agents.12-15 These compounds inhibit several CDKs:
roscovitine mainly inhibits CDK2, 5, 7 and 9, SNS-032 inhibits
CDK2 and CDK9 while flavopiridol has high selectivity for
CDK9, Ki <3 nmol/L compared with Ki values of 40 to
70 nmol/L for cell-cycle CDKs.16

Flavopiridol is a synthetic flavone which is structurally
related to a natural molecule derived from Dysoxylum binectar-
iferum, an indigenous plant from India.17 It has been tested in-
vitro in several cell models of pathology, including human
chronic lymphocytic leukemia cells,18 glioblastoma cells,5 leu-
cocytes19 and smooth muscle cells.20 While in-vitro assays,
using cell culture and bioinformatics tools, can provide a

reasonably thorough assessment of toxicity many novel drug
candidates can display off-target effects in-vivo at the level of
whole organism which may not be apparent from these types
of analyses. There is therefore a need to assess off-target effects
at the level of a whole organism in order to balance the poten-
tial therapeutic benefits and risks for ongoing costs of drug
development and ultimately for the patient who might receive
the drug at some later date.

The zebrafish, Danio rerio, has emerged as a pliable verte-
brate model organism to study physiological, pharmacological
and pathologic processes quickly and at relatively low cost. Lar-
vae show a high degree of permeability to small molecules mak-
ing them well suited for testing and screening drugs targeting
complex biological processes.21 Single and multiple compounds
can be readily assessed,22 during development within 1–5 d of
fertilisation. Experimental readouts can include detailed struc-
tural assessment, growth rate, histological studies including
immunohistology. Indeed, zebrafish-based drug screening
assays are increasingly used as part of routine preclinical safety
evaluations of novel pharmacological compounds due to their
ability to accurately predict toxicity in mammals. In this work,
we tested the CDK9 inhibitor flavopiridol in zebrafish larvae
assessing its effects on survival, growth, in-vivo cell prolifera-
tion and apoptosis. We showed that CDK9 knockdown by
CDK9-targeted morpholino injection mimics the pharmacolog-
ical effects of flavopiridol on cell apoptosis and proliferation.
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Results

Survival and phenotype: Effects of flavopiridol and CDK9
morpholino

Absence of swim activity, heart beat and tail blood flow
were used as criteria to differentiate a viable from a non-
viable larva. Kaplan-Meier curve showed that at 120 hours
post-fertilisation (hpf), i.e. 96 hour post-exposure, the
recorded survival was 92%, 75% and 57%, respectively in
the group of larvae exposed to flavopiridol at 1 mM, 3 mM
and 5mM (Fig. 1A). In comparison, CDK9 morpholino
splice blocking injected embryo group showed 72% survival
(Fig. 1B). Embryo phenotypic traits were analyzed at 72 hpf
(Fig. 2). At the concentration of 5mM larvae malformations,
such as curved body (50%) and edema (82% for both mild
and severe) were commonly observed (Fig. 2A and B),
whereas at the concentration of 3mM these malformation
were less frequent, respectively 17% and 47%, although
CDK9 activity was still reduced (Fig. 2C). At 5mM, 40% of
embryos were still chorionated and 27% showed reduced
total body length, whereas at 3mM these values were 12%
and 30%, respectively, compared to control. A dose-depen-
dent inhibition of CDK9 activity was observed at each of
the 3 concentrations tested (1, 3 and 5 mM) as a progressive
reduction in phosporylation of the target of CDK9, i.e., ser-
ine 2 residue of the carboxy-terminal domain (P-Ser2-CTD)

in the RNA pol II (Fig. 2C). On the basis of the findings in
this dose response studies, flavopiridol 3mM was adopted
thereafter in for all subsequent experiments. CDK9 mor-
pholino injected embryos showed similar phenotypic traits
as embryos treated with flavopiridol 3mM (Fig. 2B). Once
again a range of concentrations of morpholino were tested
and a final concentration was selected based on a balance
of effective reduction in CDK9 levels, minimal phenotypic
abnormalities in whole embryos and embryo survival of
greater than 70% at 72hpf.

Flavopiridol affects cell death and proliferation

H&E analysis showed underdeveloped forebrain and midbrain
in embryos exposed to flavopiridol and features consistent with
increased apoptosis compared to controls (Fig. 3, black arrow-
heads). Defects in eye development were also observed, in par-
ticular small eye with general or localized necrosis (Fig. 3, red
arrowheads). TUNEL assay showed a significant increase in
apoptotic nuclei in larvae exposed to flavopiridol compared to
controls (Fig. 4). In contrast, BrdU immunostaining showed a
significant reduction in the number of dividing cells compared
to controls (Fig. 5). In both TUNEL and BrdU assays, CDK9-
targeted morpholino treatment of larvae showed very similar
results as for flavopiridol.

Figure 1. Kaplan-Meier survival curve following exposure to flavopiridol or morpholino injection. Survival rate in zebrafish embryos following continuous exposure to
flavopiridol (at least n D 100 per group) in the range 1–5mM (A), from 24hpf up to 120 hpf or injection with morpholino 0.2ng/embryo (at least n D 100 per group) (B).
Surviving embryos were counted every 24 hours until 120hpf.

2 G. MATRONE ET AL.



In situ whole embryo CDK9 immunohistochemistry

Immunostaining in whole-mount larvae identified ubiquitous
presence of CDK9 throughout the embryo that was most
apparent in the tail region (Fig. 6). Confocal imaging, at low
magnification, showed a high intensity of CDK9 staining in a
linear pattern around the tail region (Fig. 6A and B), probably

coinciding with the growth plate of the tailfin. At high power
magnification (Fig. 6C) there was a more punctate pattern of
staining with distribution predominantly in the cytoplasm with
less frequent staining in the nucleus. This pattern was not
observed in larvae injected with CDK9-targeted morpholino
where staining was significantly reduced confirming successful
knockdown of CDK9 protein (Fig. 6C).

Figure 2. Analysis of zebrafish embryo phenotype following exposure to flavopiridol or morpholino injection. (A) Zebrafish embryos at 72 hpf continuously exposed to fla-
vopiridol in the range 1–5mM from 24 hpf up to 120 hpf (at least nD 100 per group), or injected with morpholino 0.2ng/embryo (at least nD 100 per group). (B) Stacked
column chart showing phenotypic traits observed following CDK9 inhibition. (C) Flavopiridol dose-dependent inhibition of CDK9 activity. Western blotting for Phospho
Serine2 in the Carboxy-Terminal Domain (P-Ser2-CTD) of the RNA pol II. Serine 2 in this complex is phosphorylated by CDK9 when this is active. Tubulin was used as
loading control.
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Discussion

CDK9 inhibition is currently being evaluated in pre-clinical and
clinical studies for the treatment of a number of different cancers
mainly in combination with other chemotherapeutic agents.3,6

Flavopiridol acts by competing with ATP at the ATP-binding site
of CDK9 and has been shown to decrease global levels of tran-
scription in Drosophila,23 in HeLa or 293 cells24 and in chronic
lymphocytic leukemia cells.23 This global inhibition of transcrip-
tion is similar to that seen with other compounds known to target
transcription such as Actinomycin D25 and DRB.26

We have shown that flavopiridol causes CDK9 inactivation
as confirmed by Western blot analysis showing reduced phos-
phorylation of the Serine 2 (P-Ser2), the direct target of
CDK9.27 Chao and Price16 found a similar result in Drosophila
where they detected reduced32 P-incorporated-RNA polymer-
ase II following exposure to flavopiridol. Decreased P-Ser2 and
reduced transcription could explain the embryonic develop-
mental delay observed in this work as shown by a reduction in
total body length and a high proportion of chorionated
embryos at 72 hpf. CDK9 activity, but not gene and protein
expression, has been shown to increase in mouse myocardium
via Gq, calcineurin and chronic mechanical signals for hyper-
trophic growth).28 CDK9 has also been shown to decrease as
neutrophils age in culture and enter apoptosis.29 Indeed, we
found an increased apoptosis (TUNEL staining), more evident
in the brain structures and eye, and suppressed cell prolifera-
tion (BrdU staining) in the zebrafish whole embryo following
CDK9 inhibition that could well explain the developmental
defects observed in-vivo (Fig. 2A & B) and in H&E histology
(Fig. 3). We have also shown that flavopiridol appears to cause
a paradoxical increase in the levels of CDK9 protein and

cardiac-related genes.30 This raises the prospect that a hitherto
undefined feedback mechanism induced by flavopiridol expo-
sure could be responsible for this finding. Indeed, Garriga
et al.25 reported that despite the impact on general transcrip-
tion, a significant number of transcripts are rapidly down- or
upregulated following treatment of cultured human glioblas-
toma cells with flavopiridol. Moreover, specific inhibition of
CDK9 activity using a dominant negative form of CDK9 leads
to a distinctive change in the pattern of gene expression com-
pared to that obtained with flavopiridol.25

There are several possible explanations for these observa-
tions. Flavopiridol may alter transcription by other mecha-
nisms in addition to CDK9 inhibition or may inhibit other
CDKs, although with lower efficacy. Indeed, the phosphoryla-
tion of Serine 5 on the CTD of the RNAPII is reduced by flavo-
piridol via its inhibitory effect on CDK7 in human
glioblastoma cells.5 Furthermore, a recent screen seeking bind-
ing inhibitors to a panel of 119 kinases indicated that flavopiri-
dol also binds the transcription regulator Calcium/Calmodulin
kinase 1 with higher affinity than other CDKs and CDK-related
kinases.31 CDK9 was unfortunately not specifically tested or
reported in this study.

Flavopiridol has been shown to have potent antiproliferative
effects on 60 human cancer cell lines in the US National Cancer
Institute screen panel32 and is currently being evaluated in
numerous studies for treating haematological and solid cancers.
In the cardiovascular system, flavopiridol is known to inhibit
smooth muscle cell proliferation and migration in vitro. We
showed that flavopiridol affects cardiac development, perfor-
mance and cardiomyocyte proliferation in the zebrafish.30 Con-
sidering these well characterized downstream effects of
flavopiridol its effects on the heart are not unexpected.

Figure 3. Haematoxylin and eosin histological staining. Zebrafish embryos (Wik, wild type strain) injected with CDK9-targeting morpholino or exposed to Flavopiridol
3uM showed increased appearance of apoptotic/necrotic bodies (black and red arrowheads, respectively), particularly in the brain area, with underdeveloped forebrain
and midbrain, compared to control (black arrow). Fb, forebrain; mb, midbrain; hb, hindbrain; Ys, yolk sac.
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Indeed, there appears to be a direct cardiotoxic effect of
CDK inhibitors, as clinical use of these molecules have shown.29

However, the mechanism by which they exert their cardiotoxic-
ity is not well understood. Hasinoff and Patel33 showed in neo-
natal rat ventricular cardiomyocytes that flavopiridol, and
other kinases inhibitors, induce the release of the cytosolic
enzyme lactate dehydrogenase into the media, a widely used
measure of drug-induced damage to cardiomyocytes.33 An
additional cardiotoxic mechanism might involve increased apo-
ptosis of cardiomyocytes since flavopiridol is well recognized to
induce programmed cell death in certain settings.34

CDK9 immunostaining

CDK9 immunostaining in the whole embryo suggests wide-
spread distribution of CDK9 throughout the body with more

intense staining along the length of the tailfin. This ubiquitous
presence supports the hypothesis that CDK9 represents a mas-
ter regulator essential in early development.35 Higher magnifi-
cation revealed a punctate distribution predominantly in the
cytoplasm but also in the nucleus. Conversely, Dow et al.36

immunostained HeLa cells with the phospho-Thr186-CDK9
antiserum, showing the activated form of CDK9, and reported
as a predominantly nucleoplasmic localization of CDK9 stain-
ing. Other reports support a predominantly nuclear localization
of CDK9.35,37 In our experiments we used a CDK9 antiserum
that labels either the phosphorylated or the non- phosphory-
lated forms of CDK9. Unfortunately, a phospho-Thr-CDK9
antibody for zebrafish was not available and therefore we could
not distinguish between the 2 isoforms. However, Napolitano
et al.38 indicated that CDK9 was predominantly located in the
nucleus although there was also evidence of cytoplasm staining.

Figure 4. Effects of CDK9 inhibition on apoptotis. Lower panels – Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) immunostaining. Zebrafish
embryos (Wik, wild type strain) at 72 hpf injected with CDK9-targeting morpholino or continuouly exposed to Flavopiridol 3mM showed significant increase in the appear-
ance of apoptotic bodies (number of TUNEL positive nuclei) compared to control, counted in the trunk region and reported in the scatter graph. At least n D 12 embryo
per group; data were statistically analyzed by student t-test; ��� D �0.001.
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These authors suggested that CDK9 is actively exported from
the nucleus to the cytoplasm and that leptomycin B, a specific
inhibitor of nuclear export, inhibits this process.

A further interesting finding in our immunostaining experi-
ments is that the CDK9 cytoplasmic punctae appeared to be of
different sizes. This is consistent with previous work suggesting
that CDK9 exists in complexes of different size. One study
found a 1:1:1 ratio for CDK9, cyclin T1 and HEXIM molecules
in the large P-TEFb complex.39 However, since HEXIM homo-
dimerizes through its coiled-coil regions, it was proposed that 2
HEXIM molecules and one 7SK snRNA associate with 2 cyclin
T1/CDK9 heterodimers form the inactive P-TEFb complex.40,41

Limitations of flavopiridol as a therapeutic drug

Flavopiridol has been proposed as treatment for several condi-
tions due to its selectivity for CDK9 over other CDKs.

However, flavopiridol is not selective for any particular organ
or cell type and hence could have widespread and non-specific
toxic effects on highly proliferative tissues such as the liver or
bone marrow. There is therefore scope to develop tissue or cell-
specific anti-CDK9 drugs. This possibility arises due to the
presence of 2 different CDK9 isoforms, CDK955 and CDK9.42

These are expressed differentially in certain cell types and a first
step toward finding a more cell-specific compound would be a
careful assessment of CDK9 isoform expression in different tis-
sue types.

Material and methods

Ethical approval

All experiments were approved by the local ethics committee
and conducted in accordance with the United Kingdom

Figure 5. BrdU immunostaining. Injection of CDK9-targeting morpholino or exposure to Flavopiridol reduced significantly the number of BrdU positive nuclei compared
to controls. Brdu figures were counted in the tail region as shown in these images and reported in the scatter graph. At least n D 20 embryo per group; data were
statistically analyzed by student t-test; �� D �0.01, ��� D �0.001.
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Animals (Scientific Procedures) Act 1986 in an approved
establishment.

Zebrafish maintenance

Zebrafish husbandry, embryo collection and maintenance were
performed according to accepted standard operating proce-
dure.42 The Wik (wild type) strain was used for all experiments
and staged according to Kimmel.43 Larvae were maintained at
28.5�C on a 14 h light/10 h dark cycle in egg water until
dechorionated and then in embryo medium.44 Larvae were
anesthetized in a solution of Tricaine 20 mmol/L (mM) (ethyl
3-aminobenzoate methanesulfonate, Sigma, cat. E10521) and

euthanised with an overdose of the same compound. All experi-
mental procedures were performed at room temperature
(RT, 23�C).

Pharmacological treatment of larvae

Zebrafish larvae (24 hpf) were placed in embryo medium con-
taining flavopiridol (Sigma, cat. F3055) 3 mmol/L (mM) diluted
in 1% DMSO carrier solvent. Solutions were replaced at 48, 72
and 96 hpf. Control larvae were exposed at DMSO 1%. The
drug concentration of 3 mmol/L was selected after a series of
experiments assessing the concentration of flavopiridol which
resulted in minimum toxicity to the whole embryo while also

Figure 6. Immunostaining for CDK9 in whole larvae. (A) Confocal images of zebrafish embryo (Wik, wild type) 72 hpf control non-injected (above), injected with mismatch
morpholino (middle) or CDK9-targeted morpholino (low) and immunostained with anti-CDK9 antibody, in red, and counterstained with DAPI. The staining shows diffuse
presence of CDK9, in both nucleus and cytoplasm. The small yellow boxed area in a control non injected larva is shown at higher magnification in (B).
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resulting in a significant decrease in CDK9 activity confirmed
by reduced phosphorylation of the serine 2 residue of RNA
polymerase II.45

Initially, exposure to the Flavopiridol was started just after
fertilization but this caused death of all larvae by 24 hpf. Expo-
sure to flavopiridol was therefore started at 24 hpf when sur-
vival was found to be considerable increased. Survival data for
embryos treated from 24 to 96 hours are plotted on a Kaplan-
Meier curve (Fig. 1).

Morpholino injections

A 0.5 nanolitre solution containing 0.2ng of CDK9-targeting
morpholino (Mo) (Gene Tools) was injected in one to 2-cell stage
larvae just beneath the blastoderm using a pulled glass pipette
using a standard injector (Narishige, Microinjector IM300). Suc-
cessful injection was assessed under fluorescence microscope by
the red tag lissamine at the 30end of the Mo. Two different mor-
pholinos were used. The translation blocking Mo that binds the
CDK9 mRNA translation initiation complex including the ATG
triplet. This Mo (50- CTTCCGGTTTTGTCGCGCTGCATCC
-30, (NC_007132.6)) resulted in a high mortality of around 50%
of embryos by 24 hpf even at very low concentrations. Whereas
injection of the CDK9-Mo splice blocking, designed against exon
3 and intron 3 (50- GGTGCATTTTCTTACCCCTTCTTTC -30,
(NM_212591.1)) resulted in a better survival at 24 hours despite
effective knockdown of CDK9 protein and hence this was used
for all subsequent experiments. A mismatch Mo was used as a
control (50- GGTcCATTTTgTTAgCCgTTgTTTC -30).

BrdU assay

BrdU (5-Bromo-20-deoxyuridine) labeling was performed as
described in Laguerre et al.46 and modified as follows. Live lar-
vae were placed in a 90mm diameter petri dish and incubated
in BrdU (Sigma-Aldrich, cat. B5002) 10 mM in embryo
medium (EM) with 15% DMSO (Sigma, cat. D2650) for
20 min, on a surface of ice; thermal shock allows BrdU penetra-
tion within the embryo. The petri dish was then removed from
the ice and larvae rinsed twice with fresh embryo medium at
28.5�C before recovering in the incubator at 28.5�C for 2 hour.
Larvae were then euthanised in tricaine and fixed overnight in
PFA 4% and rinsed 3 times in PBS containing Triton-X100
0.1% (PBS-Tx100).

To aid antibody penetration, larvae were digested with Pro-
teinase K (Sigma, cat. P2308) 10mM for 20min at RT and then
rinsed several times in PBS-Tx100. They were then re-fixed for
30min in PFA 4% before being rinsed twice in PBS and then
twice in HCl 2N before being incubated at RT for a further
1 hour in HCl 2N. They were rinsed 3 times in PBS and incu-
bated for 1–2 hours in bovine serum albumin (BSA) (Sigma, cat.
A7906) 3% blocking solution at RT or overnight (ON) at 4�C
while gently shaking. Larvae were then incubated for 2h in anti-
BrdU (1:100 rat; Dako, cat. M0744) at RT or ON at 4�C. After
rinsing several times, larvae were incubated for 2h with anti-
mouse TRITC (1:500) in the dark. Larvae were then mounted
on chambered slides (Microscope cavity slides 2 cell, Hawksley,
cat. 2CS000) with ProLong! Gold antifade reagent (Life Tech-
nologies, cat. P36930), examined on a fluorescence microscope

Zeiss Axioskop II MOT Plus (Carl Zeiss) using a 40x objective
and digital images captured for later analysis. BrdU positive
nuclei were counted in at least 5 larvae per group (Fig. 4).

The sampling strategy employed for image capture involved
randomly selecting 2 fields from embryo body length. Images were
downloaded to a computer for image analysis with ImageJ soft-
ware. For each image collected, a region of interest of 10,000 mm2

was used within the image to count BrdU positive nuclei (Fig. 5).

CDK9 immunostaining

Larvae were euthanized in Tricaine 1mM and fixed in 4% para-
formaldehyde (PFA, Sigma, P6148). Then, larvae were permea-
bilized in proteinase K (10 mg/ml), for 20 min at RT, then
washed in PBS-Tx100 (0.1%) and blocked in Bovine Serum
Albumin 5% in PBS for 3 h. Larvae were incubated with anti-
CDK9 antibody (Cell Signaling Technology, C12F7, rabbit
1:100 in PBS), followed by incubation with anti-rabbit antibody
(Alexa fluor, Dako, 1:500). Subsequently, larvae were incubated
in DAPI (1:1000, Sigma, cat. D9542) for 15 minutes, washed in
PBS and then mounted in glycerol 100%. Confocal microscopy
(Leica SP5) was used to capture z-stack images of whole larvae.

Histopathology

Haematoxylin & Eosin (H&E) staining was used to examine
histological features of cells and organs.47 After fixation in 4%
PFA for 3h at RT or ON at 4�C, specimens were dehydrated
through an ascending ethanol series (from 25% – 100% in 5
steps) and embedded in paraffin in a transverse or sagittal ori-
entation. Serial 5mm tissue sections were cut on a microtome
and stained with H&E, according to standard protocols.47 H&E
is a general histological stain for cell nuclei (haematoxylin, col-
ored blue); other structures, i.e. cytoplasm, collagen and muscle
fibers will be stained with eosin and therefore be colored red.
Sections were observed under compound microscope and
images captured using a standard color camera. A qualitative
analysis of typical cytomorphological alterations of apoptotic
cells (cell shrinkage, eosinophilic dense cytoplasm, pyknotic
nuclei, karyorrhexis) was performed.

Whole-mount TUNEL assay

The TUNEL method is used to assay the endonuclease cleavage
products by enzymatically end-labeling the DNA strand
breaks.48 Apoptotic cell death in whole-mount zebrafish was
detected according to a modification of the ApopTag rhoda-
mine In Situ Apoptosis Detection kit (Chemicon, cat. S7165)
protocol. Larvae were fixed in 4% paraformaldehyde (PFA) at
4�C, washed in PBS, permeabilized with proteinase K (10mg/
ml) followed by 2 further washes in PBS. They were then fixed
again in 4% PFA, placed in prechilled ethanol:acetic acid (2:1)
at ¡20�C for 10 min, then washed in PBS-T (PBS 1X, 0.1%
Tween-20) 3 times before incubation in equilibration buffer
and further steps as recommended by the manufacturer.
TUNEL assay staining was quantified by counting positive
staining puncta in the whole embryo from z-stack confocal
images using ImageJ.
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Analysis of the phenotype

Whole embryo phenotype following treatments were described
at 72 hpf on the basis of morphologic and functional character-
istics under bright field microscopy and reported graphically
(Fig. 2) as a stacked column graph. In each column the percen-
tages of the defined phenotype obtained in each treatment were
reported. Chorion phenotype represents embryos that are still
located in their chorion at 72 hpf. Edema phenotypes refer to
the severity of edema that surrounds the anteroventral part of
the fish close to the heart. Curved body phenotype refers to lar-
vae with an abnormal curvature in the longitudinal axis.
Reduced body length phenotype assessed the percentage of
embryos with body length, measured as the distance from the
snout to the posterior tip of the notochord, less than the 10% of
the average in the control group. Reduced swim phenotype
refers to the percentage of embryo with low swim or absent
swim standing at the bottom of the petri dish. Phenotype char-
acterization was undertaken independently within our labora-
tory for each of the 2 CDK9 manipulations. At least 4 different
clutches of larvae were assessed under each of the treatment
groups.

Statistical analysis

Experiments were performed in triplicate with on average 30–
50 larvae per experiment, unless otherwise stated. Data are pre-
sented as mean § standard error of the mean (SEM). Statistical
analyses were performed using GraphPad Prism 5. For nor-
mally distributed data, the Student t-test was used to compare
means between groups and Mann Whitney U test was used for
non-normally distributed data. P values <0.05 were considered
significant.

Abbreviations

BrdU 5-Bromo-20-deoxyuridine
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