153 research outputs found

    Sediment supply dampens the erosive effects of sea-level rise on reef islands

    Get PDF
    AbstractLarge uncertainty surrounds the future physical stability of low-lying coral reef islands due to a limited understanding of the geomorphic response of islands to changing environmental conditions. Physical and numerical modelling efforts have improved understanding of the modes and styles of island change in response to increasing wave and water level conditions. However, the impact of sediment supply on island morphodynamics has not been addressed and remains poorly understood. Here we present evidence from the first physical modelling experiments to explore the effect of storm-derived sediment supply on the geomorphic response of islands to changes in sea level and energetic wave conditions. Results demonstrate that a sediment supply has a substantial influence on island adjustments in response to sea-level rise, promoting the increase of the elevation of the island while dampening island migration and subaerial volume reduction. The implications of sediment supply are significant as it improves the potential of islands to offset the impacts of future flood events, increasing the future physical persistence of reef islands. Results emphasize the urgent need to incorporate the physical response of islands to both physical and ecological processes in future flood risk models.</jats:p

    Quantitative bone marrow lesion size in osteoarthritic knees correlates with cartilage damage and predicts longitudinal cartilage loss

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow lesions (BMLs), common osteoarthritis-related magnetic resonance imaging findings, are associated with osteoarthritis progression and pain. However, there are no articles describing the use of 3-dimensional quantitative assessments to explore the longitudinal relationship between BMLs and hyaline cartilage loss. The purpose of this study was to assess the cross-sectional and longitudinal descriptive characteristics of BMLs with a simple measurement of approximate BML volume, and describe the cross-sectional and longitudinal relationships between BML size and the extent of hyaline cartilage damage.</p> <p>Methods</p> <p>107 participants with baseline and 24-month follow-up magnetic resonance images from a clinical trial were included with symptomatic knee osteoarthritis. An 'index' compartment was identified for each knee defined as the tibiofemoral compartment with greater disease severity. Subsequently, each knee was evaluated in four regions: index femur, index tibia, non-index femur, and non-index tibia. Approximate BML volume, the product of three linear measurements, was calculated for each BML within a region. Cartilage parameters in the index tibia and femur were measured based on manual segmentation.</p> <p>Results</p> <p>BML volume changes by region were: index femur (median [95% confidence interval of the median]) 0.1 cm<sup>3 </sup>(-0.5 to 0.9 cm<sup>3</sup>), index tibia 0.5 cm<sup>3 </sup>(-0.3 to 1.7 cm<sup>3</sup>), non-index femur 0.4 cm<sup>3 </sup>(-0.2 to 1.6 cm<sup>3</sup>), and non-index tibia 0.2 cm<sup>3 </sup>(-0.1 to 1.2 cm<sup>3</sup>). Among 44 knees with full thickness cartilage loss, baseline tibia BML volume correlated with baseline tibia full thickness cartilage lesion area (<it>r </it>= 0.63, <it>p</it>< 0.002) and baseline femur BML volume with longitudinal change in femoral full thickness cartilage lesion area (<it>r </it>= 0.48 <it>p</it>< 0.002).</p> <p>Conclusions</p> <p>Many regions had no or small longitudinal changes in approximate BML volume but some knees experienced large changes. Baseline BML size was associated to longitudinal changes in area of full thickness cartilage loss.</p

    High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers

    Get PDF
    Sensitivity to oestrogens and apoptosis are critical determinants of the development and progression of breast cancer and reflect closely linked pathways in breast epithelial cells. For example, induction of BCL-2 oncoprotein expression by oestrogen contributes to suppression of apoptosis and BCL-2 and oestrogen receptor (ER) are frequently co-expressed in tumours. BAG-1/HAP is a multifunctional protein which complexes with BCL-2 and steroid hormone receptors (including the ER), and can suppress apoptosis and influence steroid hormone-dependent transcription. Therefore, analysis of expression of BAG-1 in human breast cancer is of considerable interest. BAG-1 was readily detected by immunostaining in normal breast epithelial cells and most ER-positive tumours, but was undetectable or weakly expressed in ER-negative tumours. BAG-1 positive cells showed a predominantly cytoplasmic or cytoplasmic plus nuclear distribution of staining. A correlation between ER and BAG-1 was also evident in breast cancer derived cell lines, as all lines examined with functional ER expression also expressed high levels of BAG-1. In addition to the prototypical 36 kDa BAG-1 isoform, breast cancer cells expressed higher molecular weight isoforms and, in contrast to BCL-2, BAG-1 expression was independent of oestrogens. BAG-1 isoforms were differentially localized to the nucleus or cytoplasm and this was also independent of oestrogens. These results demonstrate a close association between BAG-1 and functional ER expression and suggest BAG-1 may be useful as a therapeutic target or prognostic marker in breast cancer. © 1999 Cancer Research Campaig

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    In Vitro Analysis of Integrated Global High-Resolution DNA Methylation Profiling with Genomic Imbalance and Gene Expression in Osteosarcoma

    Get PDF
    Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks

    Reproducible Cancer Biomarker Discovery in SELDI-TOF MS Using Different Pre-Processing Algorithms

    Get PDF
    BACKGROUND: There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS) studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached. RESULTS: In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE) peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR) control approach and that the reproducibility of DE peak detection could thereby be increased. CONCLUSIONS: Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers

    Placentation defects are highly prevalent in embryonic lethal mouse mutants.

    Get PDF
    Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intrauterine lethality. Analysis of these mutants has largely focused on the embryo and not the placenta, despite the crucial role of this extraembryonic organ for developmental progression. Here we screened 103 embryonic lethal and sub-viable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders program for placental phenotypes. We found that 68% of knockout lines that are lethal at or after mid-gestation exhibited placental dysmorphologies. Early lethality (embryonic days 9.5-14.5) is almost always associated with severe placental malformations. Placental defects correlate strongly with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests that a considerable number of factors that cause embryonic lethality when ablated have primary gene function in trophoblast cells. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes that govern placenta formation

    Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel

    Get PDF
    The envelope (E) protein from coronaviruses is a small polypeptide that contains at least one α-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA), but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV) that the transmembrane domain of E protein (ETM) forms pentameric α-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular α-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293) cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA), but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target

    Measuring Spirituality as a Universal Human Experience: A Review of Spirituality Questionnaires

    Get PDF
    Spirituality is an important theme in health research, since a spiritual orientation can help people to cope with the consequences of a serious disease. Knowledge on the role of spirituality is, however, limited, as most research is based on measures of religiosity rather than spirituality. A questionnaire that transcends specific beliefs is a prerequisite for quantifying the importance of spirituality among people who adhere to a religion or none at all. In this review, we discuss ten questionnaires that address spirituality as a universal human experience. Questionnaires are evaluated with regard to psychometric properties, item formulation and confusion with well-being and distress. Although none of the questionnaires fulfilled all the criteria, the multidimensional Spiritual Well-Being Questionnaire is promising

    Prostaglandin production in mouse mammary tumour cells confers invasive growth potential by inducing hepatocyte growth factor in stromal fibroblasts

    Get PDF
    Interactions between stromal and mammary tumour cells play a crucial role in determining the malignant behaviour of tumour cells. Although MMT mouse mammary tumour cells do not produce hepatocyte growth factor (HGF), addition of conditioned medium (CM) from MMT cells to cultures of human fibroblasts derived from skin and breast tissues stimulated the production of HGF, thereby indicating that MMT cells secrete an inducing factor for HGF. This HGF-inducing factor, purified from MMT-derived CM, proved to be prostaglandin E2 (PGE2). Consistently, treatment of MMT cells with indomethacin, an inhibitor of cyclooxygenase, abolished this HGF-inducing activity in MMT-derived CM, while treatment of MMT cells with HGF stimulated cell growth and cell motility. Likewise, HGF strongly enhanced urokinase-type plasminogen activator activity and invasion of MMT cells through Matrigel: a 15-fold stimulation in the invasion of MMT cells was seen by HGF. Finally, MMT cells in the upper compartment were co-cultivated with fibroblasts in the lower compartment of the Matrigel chamber, HGF levels in the co-culture system exceeded the level in fibroblasts alone and suppression occurred with exposure to indomethacin. Together with increase in the HGF level, the invasion of MMT cells was enhanced by co-cultivation with fibroblasts, whereas the increased invasion of MMT cells was significantly inhibited by an anti-HGF antibody and by indomethacin. These results indicate mutual interactions between MMT cells and fibroblasts: MMT-derived PGE2 plays a role in up-regulating HGF production in fibroblasts, while fibroblast-derived HGF leads to invasive growth in MMT cells. The mutual interactions mediated by HGF and prostaglandins may possibly be a mechanism regulating malignant behaviour of mammary tumour cells, through tumour–stromal interactions. © 1999 Cancer Research Campaig
    corecore