16 research outputs found

    Experience in implementing harvest strategies in Australia's south-eastern fisheries

    Get PDF
    The Southern and Eastern Scalefish and Shark Fishery (SESSF) is a complex multi-species fishery, with 34 stock units under quota management, for which a harvest strategy framework was developed in 2005. The framework involves the application of a set of tier-based harvest control rules (HCR) designed to provide a precautionary approach to management. The harvest strategy framework has been applied from 2005 to 2007, resulting in substantial reductions in quotas across the fishery. The experience in implementing the framework, both positive and negative, is described, and general lessons are drawn. Key lessons include the importance of formally testing such strategies using management strategy evaluation, the impact of external management drivers on implementation of the approach, the need to define strategies for setting "bycatch quotas" in multi-species fisheries, and the need for flexibility and pragmatism in the early stages of implementing such an approach

    Selectivity, efficacy and toxicity studies of UCCB01-144, a dimeric neuroprotective PSD-95 inhibitor

    Get PDF
    Inhibition of postsynaptic density protein-95 (PSD-95) decouples N-methyl-d-aspartate (NMDA) receptor downstream signaling and results in neuroprotection after focal cerebral ischemia. We have previously developed UCCB01-144, a dimeric PSD-95 inhibitor, which binds PSD-95 with high affinity and is neuroprotective in experimental stroke. Here, we investigate the selectivity, efficacy and toxicity of UCCB01-144 and compare with the monomeric drug candidate Tat-NR2B9c. Fluorescence polarization using purified proteins and pull-downs of mouse brain lysates showed that UCCB01-144 potently binds all four PSD-95-like membrane-associated guanylate kinases (MAGUKs). In addition, UCCB01-144 affected NMDA receptor signaling pathways in ischemic brain tissue. UCCB01-144 reduced infarct size in young and aged male mice at various doses when administered 30 min after permanent middle cerebral artery occlusion, but UCCB01-144 was not effective in young male mice when administered 1 h post-ischemia or in female mice. Furthermore, UCCB01-144 was neuroprotective in a transient stroke model in rats, and in contrast to Tat-NR2B9c, high dose of UCCB01-144 did not lead to significant changes in mean arterial blood pressure or heart rate. Overall, UCCB01-144 is a potent MAGUK inhibitor that reduces neurotoxic PSD-95-mediated signaling and improves neuronal survival following focal brain ischemia in rodents under various conditions and without causing cardiovascular side effects, which encourages further studies towards clinical stroke trials

    A brain atlas of synapse protein lifetime across the mouse lifespan

    Get PDF
    The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease

    A brain atlas of synapse protein lifetime across the mouse lifespan

    Get PDF
    The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease

    The potential of archival tags to provide long-term movement and behaviour data for seabirds: First results from wandering albatross Diomedea exulans of South Georgia and the Crozet Islands

    No full text
    This paper reports the first attempts at geo-location of albatrosses using miniature data loggers attached to seabirds for extended periods of time. The paper highlights the potential of data loggers to gain insights into the foraging distribution and behaviour of seabirds. Archival tags recording light and temperature were placed on non-breeding Wandering Albatrosses Diomedea exulans from South Georgia and the Crozet Islands. Estimates of position for a Wandering Albatross from the Crozet Islands indicated an extensive journey from southern Africa across the Indian Ocean to south-eastern Australia and east of New Zealand. A Wandering Albatross from South Georgia apparently moved east across the Atlantic Ocean, while another moved west to longitudes approximating the Patagonian Shelf. These areas correspond to previously known movement patterns to areas of high activity by Southern Ocean longline fishing fleets. Albatrosses are an important by-catch of these fisheries, and knowledge of the spatial and temporal distributions of these threatened species will assist assessments of interactions and risk

    Evaluating sustainability of fisheries bycatch mortality for marine megafauna: a review of conservation reference points for data-limited populations

    No full text
    Fisheries bycatch threatens populations of marine megafauna such as marine mammals, turtles, seabirds, sharks and rays, but fisheries impacts on non-target populations are often difficult to assess due to factors such as data limitation, poorly defined management objectives and lack of quantitative bycatch reduction targets. Limit reference points can be used to address these issues and thereby facilitate adoption and implementation of mitigation efforts. Reference points based on catch data and life history analysis can identify sustainability limits for bycatch with respect to defined population goals even when data are quite limited. This can expedite assessments for large numbers of species and enable prioritization of management actions based on mitigation urgency and efficacy. This paper reviews limit reference point estimators for marine megafauna bycatch, with the aim of highlighting their utility in fisheries management and promoting best practices for use. Different estimators share a common basic structure that can be flexibly applied to different contexts depending on species life history and available data types. Information on demographic vital rates and abundance is required; of these, abundance is the most data-dependent and thus most limiting factor for application. There are different approaches for handling management risk stemming from uncertainty in reference point and bycatch estimates. Risk tolerance can be incorporated explicitly into the reference point estimator itself, or probability distributions may be used to describe uncertainties in bycatch and reference point estimates, and risk tolerance may guide how those are factored into the management process. Either approach requires simulation-based performance testing such as management strategy evaluation to ensure that management objectives can be achieved. Factoring potential sources of bias into such evaluations is critical. This paper reviews the technical, operational, and political challenges to widespread application of reference points for management of marine megafauna bycatch, while emphasizing the importance of developing assessment frameworks that can facilitate sustainable fishing practices
    corecore