101 research outputs found

    Identification of critical mechanical parameters for advanced analysis of masonry arch bridges

    Get PDF
    The response up to collapse of masonry arch bridges is very complex and affected by many uncertainties. In general, accurate response predictions can be achieved using sophisticated numerical descriptions, requiring a significant number of parameters that need to be properly characterised. This study focuses on the sensitivity of the behaviour of masonry arch bridges with respect to a wide range of mechanical parameters considered within a detailed modelling approach. The aim is to investigate the effect of constitutive parameters variations on the stiffness and ultimate load capacity under vertical loading. First, advanced numerical models of masonry arches and of a masonry arch bridge are developed, where a mesoscale approach describes the actual texture of masonry. Subsequently, a surrogate kriging metamodel is constructed to replace the accurate but computationally expensive numerical descriptions, and global sensitivity analysis is performed to identify the mechanical parameters affecting the most the stiffness and load capacity. Uncertainty propagation is then performed on the surrogate models to estimate the probabilistic distribution of the response parameters of interest. The results provide useful information for risk assessment and management purposes, and shed light on the parameters that control the bridge behaviour and require an accurate characterisation in terms of uncertainty

    Seismic Response Analysis of Continuous Multispan Bridges with Partial Isolation

    Get PDF
    Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties describe the pier-isolator behaviour. Different techniques are developed for solving the seismic problem. The first technique employs the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges

    Rapid earthquake loss updating of spatially distributed systems via sampling-based bayesian inference

    Get PDF
    Within moments following an earthquake event, observations collected from the affected area can be used to define a picture of expected losses and to provide emergency services with accurate information. A Bayesian Network framework could be used to update the prior loss estimates based on ground-motion prediction equations and fragility curves, considering various field observations (i.e., evidence). While very appealing in theory, Bayesian Networks pose many challenges when applied to real-world infrastructure systems, especially in terms of scalability. The present study explores the applicability of approximate Bayesian inference, based on Monte-Carlo Markov-Chain sampling algorithms, to a real-world network of roads and built areas where expected loss metrics pertain to the accessibility between damaged areas and hospitals in the region. Observations are gathered either from free-field stations (for updating the ground-motion field) or from structure-mounted stations (for the updating of the damage states of infrastructure components). It is found that the proposed Bayesian approach is able to process a system comprising hundreds of components with reasonable accuracy, time and computation cost. Emergency managers may readily use the updated loss distributions to make informed decisions

    Local and Global Response Parameters in Seismic Risk Assessment of RC Frames Retrofitted by BRBs

    Get PDF
    This paper deals with the seismic performance and risk assessment of existing reinforced concrete (RC) buildings with limited ductility retrofitted by means of buckling restrained braces (BRBs). Two different approaches for evaluating the seismic vulnerability and risk before and after retrofit are introduced and analyzed. These approaches involve the use of different categories of engineering demand parameters (EDPs) for the system response assessment: global EDPs, that permit to obtain a synthetic description of the system behavior at a reduced computational cost, and local EDPs, more accurate in describing the response of the frame elements and of the BRBs, though more demanding from a computational point of view. The effect of the EDPs choice is analyzed by considering a two-dimensional RC frame designed for gravity-loads only as case study. The frame is retrofitted by introducing elasto-plastic dissipative braces designed for different levels of base shear capacity. The results of the study show that the use of global EDPs leads to a significant overestimation of the retrofit effectiveness in terms of both vulnerability and risk reduction. If a risk-based design is carried out for the retrofit system, braces with significantly lower dimensions are obtained by using global EDPs instead of local EDPs

    Seismic performance of an existing RC structure retrofitted with buckling restrained braces

    Get PDF
    The use of buckling restrained braces (BRBs) represents one of the best solutions for retrofitting or upgrading the numerous existing reinforced concrete framed buildings in areas with a high seismic hazard. This study investigates the effectiveness of BRBs for the seismic retrofit of reinforced concrete (RC) buildings with masonry infills. For this purpose, an advanced non-linear three-dimensional model of an existing building in L'Aquila is developed in OpenSees, by accounting for the effect of infill walls through an equivalent strut approach, and by using a recently developed hysteretic model for the BRBs. The seismic performance of the building before and after the retrofit with BRBs is evaluated by performing both non-linear static analyses and incremental dynamic analyses under a set of real ground motion records along the weak direction of the frame. Seismic demand hazard curves are built for different response parameters before and after the retrofit, by accounting for and by disregarding the contribution of the infill walls. The study results shed light on the effect of the BRBs and of the infill walls on the seismic performance of the various components of the system, and on the effectiveness of the retrofit with BRBs for a real case study

    Design methods for existing r.c. frames equipped with elasto-plastic or viscoelastic dissipative braces

    Get PDF
    Dissipative braces have proven to be very efficient devices for new buildings and seismic retrofitting of existing structures. In this paper a design method for dissipative braces based on elastic-plastic or viscoelastic behaviour, inserted in reinforced concrete existing frames with limited ductility, is proposed. The design method takes into account the dissipative behaviour of both the two components (r.c. frame and dampers). With regard to elasticplastic devices, buckling restrained braces (BRBs) are considered, whereas High Damping Rubber (HDR) based devices are considered as viscoelastic devices. The behaviour of HDR is quite complex and both stiffness and damping depend on the strain amplitude and strain rate. Equivalent linear models may however be used to simulate their behaviour at a fixed displacement amplitude and frequency, with an acceptable approximation level

    Modal properties and seismic behaviour of buildings equipped with external dissipative pinned rocking braced frames

    Get PDF
    his paper deals with the seismic protection of building frames by means of external dissipative systems. Dampers and external framing system can be arranged in several configurations, involving different kinematic behaviours and seismic performances. This study analyses a recently-developed solution called “dissipative tower”, which exploits the rocking motion of a steel braced frame, hinged at the foundation level, for activating the dampers. This system aims at controlling both the global response and the local storey deformation of the frame, by using a reduced number of viscous dampers. A state space formulation of the dynamic problem is presented in general terms, together with the solution of the seismic problem via the modal decomposition method. A parametric study is carried out to evaluate the influence of the added damping and of the braced frame stiffness on the modal properties and seismic response of a benchmark reinforced concrete frame retrofitted with the external dissipative towers. It is shown that the addition of the towers yields a regularization and reduction of the drift demand along the building height, but it may induce significant changes, not always beneficial, in the distribution of internal actions of the frame and in the absolute storey accelerations

    Innovations in earthquake risk reduction for resilience: Recent advances and challenges

    Get PDF
    The Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR) highlights the importance of scientific research, supporting the ‘availability and application of science and technology to decision making’ in disaster risk reduction (DRR). Science and technology can play a crucial role in the world’s ability to reduce casualties, physical damage, and interruption to critical infrastructure due to natural hazards and their complex interactions. The SFDRR encourages better access to technological innovations combined with increased DRR investments in developing cost-effective approaches and tackling global challenges. To this aim, it is essential to link multi- and interdisciplinary research and technological innovations with policy and engineering/DRR practice. To share knowledge and promote discussion on recent advances, challenges, and future directions on ‘Innovations in Earthquake Risk Reduction for Resilience’, a group of experts from academia and industry met in London, UK, in July 2019. The workshop focused on both cutting-edge ‘soft’ (e.g., novel modelling methods/frameworks, early warning systems, disaster financing and parametric insurance) and ‘hard’ (e.g., novel structural systems/devices for new structures and retrofitting of existing structures, sensors) risk-reduction strategies for the enhancement of structural and infrastructural earthquake safety and resilience. The workshop highlighted emerging trends and lessons from recent earthquake events and pinpointed critical issues for future research and policy interventions. This paper summarises some of the key aspects identified and discussed during the workshop to inform other researchers worldwide and extend the conversation to a broader audience, with the ultimate aim of driving change in how seismic risk is quantified and mitigated

    When Ears Drive Hands: The Influence of Contact Sound on Reaching to Grasp

    Get PDF
    Background Most research on the roles of auditory information and its interaction with vision has focused on perceptual performance. Little is known on the effects of sound cues on visually-guided hand movements. Methodology/Principal Findings We recorded the sound produced by the fingers upon contact as participants grasped stimulus objects which were covered with different materials. Then, in a further session the pre-recorded contact sounds were delivered to participants via headphones before or following the initiation of reach-to-grasp movements towards the stimulus objects. Reach-to-grasp movement kinematics were measured under the following conditions: (i) congruent, in which the presented contact sound and the contact sound elicited by the to-be-grasped stimulus corresponded; (ii) incongruent, in which the presented contact sound was different to that generated by the stimulus upon contact; (iii) control, in which a synthetic sound, not associated with a real event, was presented. Facilitation effects were found for congruent trials; interference effects were found for incongruent trials. In a second experiment, the upper and the lower parts of the stimulus were covered with different materials. The presented sound was always congruent with the material covering either the upper or the lower half of the stimulus. Participants consistently placed their fingers on the half of the stimulus that corresponded to the presented contact sound. Conclusions/Significance Altogether these findings offer a substantial contribution to the current debate about the type of object representations elicited by auditory stimuli and on the multisensory nature of the sensorimotor transformations underlying action
    • 

    corecore