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Abstract 

The response up to collapse of masonry arch bridges is very complex and affected by many 

uncertainties. In general, accurate response predictions can be achieved using sophisticated nu-

merical descriptions, requiring a significant number of parameters that need to be properly char-

acterised. This study focuses on the sensitivity of the behaviour of masonry arch bridges with 

respect to a wide range of mechanical parameters considered within a detailed modelling ap-

proach. The aim is to investigate the effect of constitutive parameters variations on the stiffness 

and ultimate load capacity under vertical loading. First, advanced numerical models of masonry 

arches and of a masonry arch bridge are developed, where a mesoscale approach describes the 

actual texture of masonry. Subsequently, a surrogate kriging metamodel is constructed to re-

place the accurate but computationally expensive numerical descriptions, and global sensitivity 

analysis is performed to identify the mechanical parameters affecting the most the stiffness and 

load capacity. Uncertainty propagation is then performed on the surrogate models to estimate 

the probabilistic distribution of the response parameters of interest. The results provide useful 

information for risk assessment and management purposes, and shed light on the parameters 

that control the bridge behaviour and require an accurate characterisation in terms of uncertainty.  

Keywords: Global sensitivity analysis; masonry arch bridges; Kriging; local sensitivity analy-

sis; uncertainty propagation; random variables. 
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1 Introduction 

Masonry arch bridges are very durable structures, which still constitute a significant propor-

tion of the bridge stock in Europe. Their importance for the road and rail infrastructure network 

is also demonstrated by the considerable amount of experimental investigations and numerical 

studies devoted to the safety assessment of masonry arch bridges (Orban, 2007; Melbourne et 

al., 2007; Sarhosis et al., 2017). The effects of ageing, the increase in time of traffic loading 

and of other type of hazards (e.g., floods) require a continuous development and improvement 

of procedures for their evaluation, monitoring, and management. This is of paramount im-

portance to ensure that these structures can continue to operate in the future. 

The behaviour of masonry arch bridges is very complex, strongly nonlinear and dependent 

on the properties of the many and interconnected constituent components of the system, such 

as the masonry arch barrel and piers, the backfill, and the spandrel walls. Thus, an accurate 

simulation of their behaviour and interaction is essential for predicting the bridge response up 

to collapse. A preliminary assessment can be carried out using semi-empirical formulas (Page, 

1993) or limit analysis approaches (Gilbert, 2007, Zampieri et al., 2015) such as those based on 

Heyman’s theory (Heyman, 1969). However, a realistic evaluation of the behaviour of masonry 

arch bridges under both service and extreme loadings requires resorting to three-dimensional 

non-linear models, such as discrete element models or those employing a mesoscale description 

of masonry (Sarhosis et al., 2017; Zhang et al., 2018). These approaches generally have a par-

ticularly high computational cost, and are not suitable for application in common practice but 

rather for calibrating and validating simplified modelling approaches.  

Besides the complexity in simulating the structural behaviour, one important aspect that 

should be addressed in any assessment of masonry arch bridges concerns the many uncertainties 

related to the geometrical and material parameters of the bridge components (Brencich et al, 

2017; Casas, 2011; De Felice & De Santis, 2010; Cavalagli et al., 2017; Ng and Fairfield, 2002; 



Moreira et al., 2016; Moreira et al., 2017; Hacıefendioğlu et al., 2017). In general, the values 

of these parameters are usually unknown and characterised by a significant scatter. For example, 

the constitutive behaviour of masonry components is strongly affected by the quality of work-

manship and weather conditions. Even in the case of newly built masonry structures, when 

bricklaying is carried out by the same bricklayer, it is difficult to obtain brickwork with con-

sistent mechanical properties (Jie et al., 2017; Melbourne & Gilbert, 1995; Tabbakhha & Mo-

daressi-Farahmand-Razavi, 2016; Tabbakhha & Deodatis, 2017; Schueremans & Van Gemert, 

2006). The uncertainty and scatter in masonry material properties is even higher in the case of 

existing masonry arch bridges, which were often built using material available in place with 

scarce quality control, and subjected to ageing, material deterioration, defects, and environmen-

tal effects (Zanaz et al.; 2016; Sykora and Holicky, 2016). A large number of tests are usually 

needed to obtain statistically meaningful values for the masonry properties (Schueremans & 

Van Gemert, 2006; Sykora and Holicky, 2016). However, it is often difficult to extract speci-

mens to be tested in laboratory, and, in the case of historical buildings, highly invasive testing 

is not possible at all. To overcome this issue, the use of inverse analysis procedures has been 

proposed to estimate the main parameters of masonry models based on flat-jack tests (Chisari 

et al., 2018). Also, the material employed for the backfill is usually characterised by significant 

uncertainty (Ng & Fairfield, 2002; Andersson, 2011). 

The works of Zhang et al. (2018) and of Moreira et al. (2016) and Moreira et al. (2017) have 

shown that even small variations of the parameters characterising the masonry and the fill ma-

terial may result in significant changes of the bridge collapse load. This issue, together with the 

high uncertainty of bridge material parameters, suggests that deterministic analysis approaches 

are inadequate for evaluating the safety of masonry arch bridges and that the use of probabilistic 

methodologies should be considered. In this respect, there are many methodologies available 



for uncertainty propagation and uncertainty quantification. Monte Carlo simulation is the ref-

erence one, the easiest to implement, but also very computational expensive, whereas variance 

reduction techniques, such as Latin Hypercube Sampling and Subset simulation (Au and Wang, 

2014), enable a significant reduction of the number of simulations required by uncertainty prop-

agation. However, their use remains impractical when dealing with complex FE model and 

time-consuming analyses. For this reason, metamodels such as response surface (Myers & 

Montgomery, 1998) and kriging (Sacks et al., 1989) have gained popularity over the past few 

decades. These tools permit to replace the computational expensive FE model for the purpose 

of mapping the input (uncertain parameters) and the output (response), with some applications 

also in the context of assessment of masonry structures (Chisari et al., 2018; Giannini et al., 

1996; Schueremans and Gemert, 1999; Milani & Benasciutti, 2010).  

In order to carry out a probabilistic analysis of masonry arch bridges, it is necessary to know 

the statistical distribution of the uncertain bridge parameters. However, the available infor-

mation is often very scarce (Melbourne et al., 2007), and a relatively high number of tests must 

be carried out to retrieve the material properties of a composite material such as masonry 

(Schueremans et al., 2006). This problem could limit significantly the use of advanced FE 

model such as those based on a mesoscale or micro-scale description of masonry, given the 

large number of input parameters required for their definition. Thus, before carrying any char-

acterisation tests and probabilistic analysis of a bridge it would be useful to identify the param-

eters that control the bridge response. Sensitivity analysis toolboxes such as Local Sensitivity 

Analysis (LSA) and Global Sensitivity Analysis (GSA) (Patelli et al., 2010; Saltelli & Chan, 

2000; Sobol, 1993) can be used for distinguishing the model parameters that affect the most the 

response parameters of interest and those that can be assumed as fixed. More in general, the 



results of sensitivity analysis can be very useful for input variables’ screening, model calibra-

tion, model validation, and decision-making processes (Patelli et al., 2010; Saltelli & Chan, 

2000; Queipo et al., 2005; Rohmer & Foerster, 2011).  

In Mukherjee et al. (2011), Sobol’s GSA (Sobol, 1993) was employed to investigate the 

parameters that affect the strength of a mesoscale model of a masonry wall. It was found that 

the friction coefficient of mortar joints is the most sensitive one, followed by Young’s modulus 

of mortar, thickness of the mortar joint, compressive fracture energy and compressive strength 

of the masonry. Zhu et al. (2017) employed Sobol’s method for GSA to evaluate the parameters 

controlling the compressive strength of a micro-scale model of a masonry wallet, and found 

that the tensile strength of the block is the most important one, followed by the elastic modulus 

of the block, Poisson’s ratio of mortar, and elastic modulus of the mortar.  

Some results of application of sensitivity analysis to masonry arch bridges are already avail-

able. For example, in Moreira et al. (2016) and in Moreira et al. (2017), sensitivity analysis was 

employed to evaluate the most influential parameters within a probabilistic framework for col-

lapse assessment of masonry arch bridges through limit analysis. However, Sobol’s GSA has 

yet to be employed to evaluate the most critical parameters of advanced meso-scale models of 

masonry arch bridges. Thus, this paper has two objectives: i) identify, via Sobol’s GSA, the 

mechanical parameters with the highest influence on the stiffness and capacity of arches and 

masonry arch bridges, and ii) analyse how the uncertainty in these parameters propagates to the 

response of bridges and to the collapse probability. For this purpose, different benchmark ex-

amples are considered. The first one is based on a widely employed analytical expression for 

computing the compressive strength of the mortar and of the bricks. This preliminary example, 

already considered in a similar study on the use of surrogate models for probabilistic analysis 

of masonry structures (Milani & Benasciutti, 2010), is used to test the validity and accuracy of 



the kriging metamodels for sensitivity and uncertainty propagation studies. The other two ex-

amples consist of numerical models of single arches with different rise-to-span ratio, and of a 

full masonry arch bridge. An advanced mesoscale modelling strategy developed at Imperial 

College (Macorini & Izzuddin, 2011) and already validated based on comparison with experi-

mental tests is employed to describe the structural behaviour of these structures. In order to 

alleviate the computational cost of the analyses, a metamodel is proposed in this work based on 

the results obtained by running few structural finite element analyses for different combinations 

of the input parameters, and then used as an inexpensive mathematical approximation of the 

actual FE model. In particular, the metamodel is employed for carrying out the global sensitivity 

analysis and for propagating the uncertainty in the input parameters and estimating the output 

probability distribution of interest. 

2 Methodology 

This section illustrates the approach and tools employed for finding the mechanical param-

eters that influence the most the capacity of arches and masonry arch bridges, and for the un-

certainty propagation. Firstly, the proposed FE modelling strategy based on a mesoscale 

description of the masonry arch barrel is briefly recalled in Section 2.1. Subsequently, the basic 

concept of kriging surrogate, which is used for sensitivity analysis and uncertain propagation, 

is described together with his construction based on a reduced number of FE analyses. Finally, 

Section 2.3 illustrates the methods employed for local and global sensitivity analysis. 

2.1 Finite element modelling approach 

In the following, the approach developed at Imperial College for describing masonry arch 

bridges utilising a mesoscale strategy for brick/block-masonry (Macorini & Izzuddin, 2011) is 

briefly illustrated. The approach, implemented in ADAPTIC (Izzuddin, 1991), was initially de-

veloped for simulating the behaviour of masonry arches by accounting for the actual masonry 



bond (Zhang et al., 2016; Zhang et al., 2018b). It was later extended to allow for the simulation 

of the backfill and spandrel walls contribution and their interaction with the arch barrel (Tubaldi 

et al., 2018a; Minga et al., 2018).   

The mesoscale approach is enhanced using partitioned modelling for parallel processing on 

high performance computing (Jokhio & Izzuddin, 2015) (Figure 1), where the masonry arch is 

described using 20-noded 3D elastic solid elements to model masonry units and 16-noded 2D 

nonlinear zero thickness interface elements to account for the formation of cracks in corre-

spondence of the mortar joints.  

 
Figure 1. Mesoscale partitioned modelling approach for masonry arch bridges (after Zhang et al. (2018a)). 

Additional nonlinear interface elements can be placed also in the middle of each bricks to 

capture potential development of cracks, though this is not necessary for the arches and bridges 

analysed in this study as efficient strip models (Zhang et al. 2016, Zhang et al. 2018b) are 

employed to investigate the critical mechanical parameters of masonry arches, and the arches 

are characterised by stretcher bonding. In these cases, the response up to collapse is character-

ised mainly by the development of radial and circumferential cracks along mortar joints (Zhang 



et al. 2016, Zhang et al. 2018b), which does not require the representation of cracking in ma-

sonry units”.Geometric nonlinearity is described by using a corotational formulation whereas 

material nonlinearity is accounted for employing a robust coupled damaged-plasticity cohesive 

model (Minga et al., 2018) enabling an effective representation of damage, cracks and plastic 

separations (Figure 2). 

 
Figure 2. Multi-surface yield criterion and evolution of nonlinear interface elements (after Minga et al. (2018)). 

With regards to the backfill, a realistic representation of its behaviour and of the interaction 

with the arch barrel is essential for an accurate response prediction of masonry arch bridges. In 

the proposed modelling strategy, the backfill domain is discretised using 15-noded tetrahedral 

elements with an elasto-plastic material behaviour. The isotropic elastic response is described 

adopting specific values for the Young’s modulus and Poisson’s ratio, whereas the plastic be-

haviour is modelled by employing a modified Drucker-Prager (D-P) yield criterion (Figure 3), 

with tension and compressive caps as described in (Tubaldi et al., 2018). The spandrel walls 

can also be described in a simplified way with a similar model, by adding also damage to ac-

count for the brittle behaviour of masonry (Tubaldi et al., 2018). 
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Figure 3. a) Modified D-P model with tensile cap and elliptic cap in compression, b) fitting of the D-P yield sur-

face to the M-C yield surface in the octahedral plane 



A mortar mesh tying method for non-conforming interfaces (Minga et al., 2018) is employed 

to allow the backfill and the arch barrel domains to be meshed independently without compat-

ibility considerations, thus enabling the optimisation of the individual meshes. In particular, a 

coarser mesh can be employed at the arch barrel-backfill interface, without compromising the 

accuracy of the results. The interaction between the arch and the backfill is described by em-

ploying nonlinear interface elements to represent separation and frictional sliding at the arch-

backfill physical interface. These interface elements connect the set of nodes at the extrados of 

the arch barrel with a set of coincident nodes, which are then tied to the nodes at the intrados of 

the backfill.  

Finally, a hierarchical partitioned modelling strategy (Jokhio & Izzuddin, 2015; Jokhio & 

Izzuddin, 2013; Jokhio, 2012) allowing for parallel computations and embedded in ADAPTIC 

(Izzuddin, 1991), is employed to reduce the time of the analysis. This is particularly beneficial 

for large-scale FE models but also for the problem at hand, requiring a significant number of 

simulations. 

The proposed finite element modelling strategy has been validated by comparison with avail-

able experimental tests on a wide range of masonry structures. In particular, it can simulate with 

good accuracy the behaviour up to collapse of masonry arches (Zhang et al., 2016; Zhang et al., 

2018b) and masonry arch bridges (Zhang et al., 2018a; Tubaldi et al., 2018). It is noteworthy 

that in the case of square arch bridges subjected to line loads uniformly distributed along the 

bridge width, an efficient representation of the behaviour can obtained by employing strip mod-

els, with only one set of solid elements along the width of the bridge specimen for the arch and 

the backfill meshes (Zhang et al. 2018a). Obviously, this representation is accurate in the case 

of rigid spandrel walls detached from the arch barrel but providing transverse confinement to 

the backfill, whereas it provides only a crude description of the bridge behaviour in the case of 

short widths and spandrel walls attached to the arch. 



2.2 Kriging surrogate 

Let : xn
f R R→  formalise the relation ( )y f= x , evaluated by means of FE calculations, 

between a scalar output y R  (e.g., the bridge collapse load) and a set of input variables col-

lected in the nx dimensional vector 
1 x

T

nx x =  x , where xn
Rx . A Kriging metamodel 

provides an inexpensive mathematical approximation of the actual, yet time-consuming FE 

simulation. The construction of the kriging metamodel relies on sampling the input space at ns 

unique locations to obtain response values for the output through the FE model. The sampling 

process is also known as design of experiments (Queipo et al. 2005), and the ns samples of the 

input and of the corresponding response are called support points or training set (Jia and 

Taflanidis, 2013). The design of experiments can be carried out by employing Latin Hypercube 

sampling or via any other technique such as Sobol sampling (Sobol’, 1976), which permit to 

cover the expected range of variation of the components of x. This obviously requires 

knowledge of the range in which the kriging metamodel will be used so that the support points 

extend over this range. It is noteworthy that the FE models addressed here are deterministic, 

and thus repeated runs for the same input parameters give the same response.  

The idea behind Kriging metamodelling is to consider the output as a realisation of a sto-

chastic process: 

 ( ) ( ) ( )y Z= +x x x   (1) 

where ( ) x  is a deterministic function approximating the mean (global) trend of the output, 

while ( )Z x  creates a ‘‘localised’’ departure from it. This departure is assumed to be a Gaussian 

process with zero mean, constant variance 2 , and stationary autocorrelation function ( ), 'R x x  

such that the autocovariance function is ( ) ( ) ( )2' , 'Cov Z Z R=  x x x x . In universal kriging, 

the trend is expressed as a linear combination of simple regression functions: 



 ( ) ( ) ( )
T

y Z= +x f x α x   (2) 

where ( ) ( ) ( )1

T

pf f =  f x x x  is the basis function vector, p is the total number of basis 

functions, and 1

T

p  =  α  is the unknown coefficients vector. 

For the autocorrelation function, a popular choice is the anisotropic Gaussian correlation (Jia 

and Taflanidis, 2013): 

 ( )
2

1
, exp

nx
l m l m

i i i
i

R x x
=

 =  − −
  

x x   (3) 

where a univariate correlation with weight i  is used for the i-th of the nx dimensions of x, 

leading to a weight vector i nx
  =  θ . 

For the set of ns observations with input matrix 1 ns =  X x x , such that 
n nx s

X , and 

corresponding output vector ( ) ( )1
T

nsy y =
 

Y x x , with 
1ns

Y , the ( ) n ps
F x  basis 

matrix ( ) ( ) ( )1
T

ns =
 

F x f x f x  is defined, together with the 
n ns s

R  correlation matrix R

, whose lm-th element is ( ),l mR x x , for , 1,2,..., sl m n= . Also, for the new input x at which the 

response needs to be estimated, the correlation vector ( ) ( ) ( )1, ,
T

nsr R R =
 

x x x x x  between 

x and the observation points of X is defined, with ( ) 1nsr


x . 

A linear kriging predictor is employed, where the estimate of the response at x is expressed 

based on the response values Y as ( )ˆ Ty =x c Y . The best linear unbiased kriging predictor cor-

responds to the value of c  minimising the mean square error ( ) ( ) ( )( )
2

ˆE y y  = −
 

x x x  sub-

ject to the unbiasedness constraint ( ) ( )ˆ 0E y y− =  x x , where  E   denotes the expected 

value operator. 

This leads to the following estimator: 



 ( ) ( ) ( )* *ˆ
T T

y r= +x f x α x β   (4) 

where: 

 ( ) ( )
1

* 1 1 * 1 *,   T T
−

− − −= = −α F R F F R Y β R Y Fα   (5) 

with * 1pα  and 
1* ns

β .The second term of Equation (4), representing the localised 

deviation from the global trend, is such that it weights more the points in the training set X that 

are closer to the target point x. 

The weighting factors , together with the process variance 2 , can be derived 

by using the Maximum Likelihood Estimation (MLE) method, i.e. by maximising the probabil-

ity of the ns observations given the weights θ  and  (Lophaven et al., 2002).   

Ultimately, the kriging predictor yields an estimate of ( )y x  that is a Gaussian random var-

iable with mean ( )ŷ x  and variance ( )̂ x  given by: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1
2 2 1 1

1

ˆ 1
TT T

T

 
−

− −

−

 = + −
  

= −

x x u F R F u r x R r x

u F R r x f x

  (6) 

A Kriging metamodel has many interesting features (Jia and Taflanidis, 2013). First, it is an 

exact interpolator, i.e., the prediction is exact at the training points and the associated variance 

is zero. Second, it is asymptotically consistent (provided that the auto-correlation function is 

regular), i.e. increasing the number of observations decreases the overall variance of the process. 

Last, the prediction at a given point x is considered as a realisation of a Gaussian random vari-

able, for which it is possible to derive confidence bounds on a prediction. 

The global accuracy of the metamodel can be described by carrying a leave-one-out cross-

validation and by evaluating the coefficient of determination (Rohmer & Foerster, 2011): 

i nx
  =  θ

2



 

( ) ( ) ( )( )

( )( )

2

2 1

2

1

ˆ

1
1

ns
i

i i

i

N

i

i

y y

Q

y y
N

−

=

=

−

= −

−





x x

x

  (7) 

where ( )iy x  is the actual response value at ix  (training point), y  is the sample mean, and 

( ) ( )ˆ i

iy
−

x  is the response prediction obtained by fitting a metamodel on all the training samples 

except ix . Values of 
2R  higher than 80% correspond to a satisfactory quality of the metamodel 

(Rohmer & Foerster, 2011). 

The proposed metamodel can be employed to replace the original FE model for the purpose 

of carrying out GSA but also for uncertainty propagation in the case of random inputs with joint 

probability density function ( )pX x .  

2.3 Local and global sensitivity analysis 

In general, sensitivity analysis aims to investigate how changes in the model input x  influ-

ence the output y (Saltelli and Chan, 2000; Queipo et al., 2005). LSA studies the effect of small 

input perturbations of x around a nominal or central value, denoted as x0. The first-order trun-

cated Taylor series expansion of ( )y x is used to approximate the input-output relationship in 

the neighborhood of 0x : 

 ( ) ( ) ( )0 0y y y= +  −x x x x   (8) 

where 

0 0
1 k

y y
y

x x

  
  =
   x x

 is the local gradient of the output at 0x . 

If the input is a random vector X with mean value X  and covariance matrix CX , and the 

Taylor expansion is carried out around the mean value  of X, due to the linearity of the 

operator of Equation  (8), the expected value and covariance of the uncertain response Y(X) can 

be approximated by: 

X



   ( ) ( )YE Y y = + Xx   (9) 

 ( )
T

YC y C y
 = =

=    Xx xX X
  (10) 

This corresponds to carrying a First-Order Second-Moment (FOSM) analysis (Patelli et al., 

2010). In the case of uncorrelated input random variables, the variance of the response can be 

expressed as: 

 

2

2 2

1

N

Y Xi
i i

y

x


 
= =

 
 = 
 
 


x X

  (11) 

According to this expression, the response variance can be seen as the sum of the contribu-

tions of the different components of the input vector, weighted by the square of the local deriv-

ative. By dividing both members of Equation  (11) by 2

Y , one obtains: 

 

2
2

2

2
1 1

1
n nx x

Xi
Xi

i ii Y

y

x





= ==

 
 =  =
 
 

 
x X

  (12) 

where 
2

Xi
  denotes the relative importance of the i-th component of X to the output variance. 

It is noteworthy the sum is equal to one only in the case of a linear model and uncorrelated input 

random variables, or more in general for additive models. Moreover, the sensitivity indices 

defined in Eq. (12) are hybrid local-global, because 
i

y

x




 is evaluated locally, while Y  and 

Xi
  are global. 

If the interest is in the effect of more substantial variations of x  in its entire range of exist-

ence, then global sensitivity analysis (GSA) must be employed. GSA is based on the analysis 

of variance (ANOVA), i.e., on the evaluation of the relative contribution of the input to the 

output uncertainty, measured by the variance V  analysis (Patelli et al., 2010). In this paper, 

reference is made to the method of Sobol for GSA (Sobol’, 1993). In order to illustrate the 



method, the inputs are assumed independently and uniformly distributed within the N-dimen-

sional unit hypercube, i.e.  0,1
nx

nx
 =x . This incurs no loss of generality because any input 

space can be transformed onto this unit hypercube. Sobol (Sobol’, 1993) has shown that ( )f x  

can be decomposed into the sum of terms of increasing dimension:  

 ( ) 0 1,2,

1 1

nx

i ij nx
i i j nx

f f f f f
=   

= + + + + x   (13) 

where ( )i i if f x= , ( ),ij ij i jf f x x= , and so on. 

If each term in the expansion above is square integrable and has zero mean, i.e.: 

 ( )
1

12 1 2 1 2

0

, , , 0s s sf x x x dx dx dx =     1,2, , xs n=  (14) 

then all the terms of the decomposition are orthogonal in pairs, and the terms of the series 

can be univocally calculated using the conditional expectations of the model output y as: 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

1 1

0

0 0

1 1

0 0

0 0

, ,

N

i

i i i

ij

ij i j i i j j i j i i j j

f f d

f x f d f E y x E y

f x x f d f x f x f E y x x f x f x f



=

= − = −

= − − − = − − −



 

 

x x

x x

x x

  (15) 

and so on, where 1 2 nx
d dx dx dx=x  and idx denotes the product dx  without idx  and ijdx  

denotes the product  without idx  and jdx . 

From Equation  (15), it can be seen that ( )i if x  is the effect of varying ix  alone, known as 

the main effect of ix , and ( ),ij i jf x x  is the effect of varying ix  and jx  simultaneously, minus 

the effect of their individual variations, known as second-order interaction. Higher-order terms 

have analogous definitions. 

dx



Now, further assuming that ( )f x  is square-integrable, the functional decomposition may 

be squared and integrated over the whole domain N  to give the total variance of the output: 

 ( )2 2

0

N

V f d f


= − x x   (16) 

The partial variances can also be obtained as: 

 

( )

( )

1

2

0

1 1

2

0 0

,

i i i i

ij ij i j i j

V f x dx

V f x x dx dx

=

=



 

  (17) 

and so on. 

The total variance of the response can be accordingly expressed as: 

 12

1 1

N

i ij nx
i i j nx

V V V V
=   

= + + +    (18) 

The variances of the terms in the decomposition above are the measures of importance being 

sought. In particular, by dividing iV  and ijV  by the unconditional variance V , we obtain re-

spectively the first-order and second-order sensitivity indices: 

 

( )

( ) ( ) ( ),

ii
i

i j i jij

ij

V E y xV
S

V V

V E y x x V E y x V E y xV
S

V V

 
 = =

    − −    = =

  (19) 

While iS  estimates the expected fraction of the output variance that could be removed if the 

true value of ix  exists and is known, ijS  measures the joint effect of ix  and jx  on V. A total 

sensitivity index TiS  can also be defined for each parameter ix  that is the sum of all effects 

(first and higher orders) involving variable ix , i.e. the sum of all the sensitivity indices having 

i in their index. This index represents the total effect of the uncertainty of the i-th input param-

eter on the output variance. 



By dividing Equation (18) by V, the following relation between the sensitivity indices is 

obtained: 

 12

1 1

1
N

i ij nx
i i j nx

S S S
=   

= + + +    (20) 

It is noteworthy that for a model with N input parameters, the total number of Sobol’ indices 

is 2 xn  – 1. These indices can be estimated via Monte Carlo simulation or by means of more 

advanced techniques reducing the number of simulations to be carried out (Patelli et al., 2010). 

The time required for sensitivity analysis can be reduced significantly by employing a Kriging 

surrogate instead of the original FE model for expressing the input-output relationship. 

The sensitivity indices can be ranked in descending order, unveiling the input parameters 

that contribute the most to the output variance. The variables with small indices (e.g., a total 

sensitivity index <0.05), having a negligible effect on the output variance, can be fixed to a 

constant value to simplify the model without great impact on the result. The choice of the cut-

off value for considering an input parameter as significant should be chosen based on compu-

tational cost and accuracy considerations. 

3 Applications 

In this section, the proposed strategy for GSA and uncertainty propagation is applied by 

considering different examples. The first one is based on the analytical expression for compu-

ting the masonry strength in compression based on the strengths of the mortar and of the bricks, 

and it is considered mainly for testing the accuracy and efficiency of kriging metamodeling. 

The other examples consist of FE models representing single arches with different rise-to-span 

ratio, and of a full masonry arch bridge. The simulations and analyses required for GSA and 

uncertainty propagation are carried out by employing Cossan (Patelli et al., 2014), whereas the 



DACE toolbox (Lophaven & Nielsen, 2002) and the ooDACE toolbox (Couckuyt et al., 2014) 

are used for constructing the Kriging metamodels. 

3.1 Analytical function 

The application of Kriging metamodelling and GSA is illustrated here by considering the 

formula of Eurocode 6 (2005) for the compressive strength of masonry ckf , which is expressed 

based on the values of the compressive strength of the masonry unit cuf  and of the mortar cmf  

as: 

 0.7 0.3

ck cu cmf Kf f=   (21) 

where K is a constant which can be assumed equal to 0.55 for masonry with solid units and 

general purpose mortar (Eurocode 6, 2005). 

Milani and Benasciutti (2010) assessed the accuracy of the response surface technique as a 

surrogate model of Equation  (21) for the purpose of evaluating the probabilistic distribution of 

ckf , under the assumption that and  are independent Gaussian random variables, with 

mean and standard deviation estimated from some experimental data reported by Brencich and 

Gambarotta (2005) for eccentrically compressed masonry triplets. In particular, the mean values 

of  and  are respectively 19.91 MPa and 14.72 MPa, whereas the standard deviations 

are respectively 2.845 MPa and 0.566 MPa. 

A Kriging metamodel ( )ˆ ,K cu cmf f f  approximating the analytical function of Equation  (21) 

is constructing by employing Sobol sampling (Sobol, 1976) for the design of experiments, as-

suming a range of variation for the input parameters within three standard deviations from the 

mean. Different increasing values of the number of observations ns between 5 and 100, and 

different types of correlation functions and orders of the polynomial are considered. For each 

metamodel, the optimal values of  and  are evaluated using the Dace Toolbox (Lophaven 

cuf cmf

cuf cmf

θ
2



et al., 2002). The metamodel accuracy is evaluated via the leave-one-out cross-validation tech-

nique, by computing the coefficient of determination Q2 of Equation (7). Figure 4 reports the 

values of Q2 obtained for the different choices adopted for constructing the Kriging metamodel. 

In general, the metamodel accuracy increases by increasing ns, with a very slow rate if more 

than 50 samples are employed. Moreover, using a first-order polynomial rather than a constant 

term (zero-order polynomial) reduce slightly Q2 for a small size of the training set, while the 

use of a linear correlation model rather than a Gaussian one does not change the estimate accu-

racy. 

 
Figure 4. Coefficient of determination Q2 vs. number of samples used to train the metamodel ns for different 

types of kriging metamodels. gauss0= Gaussian correlation function and 0 degree polynomial, gauss1= Gaussian 

correlation function and 1st degree polynomial, lin1= linear correlation function and 1st degree polynomial. 

A response surface approximation  based on a quadratic polynomial is also con-

structed, by considering the same set of samples used for the Kriging metamodel. MCS is then 

carried out to propagate the uncertainty of the input parameters through the analytical function 

and the surrogate, and thus estimate the probability distribution of . In particular, 50000 

samples of  and  are employed, given the very low computational time required by each 

analysis. The kriging metamodel considered here is based on a first order polynomial approxi-

mation and a Gaussian correlation function. A number of 20 observations is considered for both 
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Kriging and the Response surface metamodels. Figure 5a shows the empirical cumulative dis-

tribution function (ECDF) of  according to the analytical models and the metamodels, and 

Figure 5b a relevant zoom in the range of values of  between 6.5 and 7 MPa, corresponding 

to very low probability of not exceedance. It can be seen that both the metamodels provide a 

very good estimate of the probabilistic distribution of , despite the low number of support 

points employed. The Kriging metamodel is more accurate than the RS metamodel, and pro-

vides an estimate of the ECDF closer to the estimate obtained by employing the analytical 

model. This result is general and can be observed also by repeating the metamodel calibration 

and MCS for different sets of samples.  

  
(a) (b) 

Figure 5. (a) ECDF of the output according to the analytical model, the kriging metamodel and the RS model and 

(b) relevant zoom.  

 

  
(a) (b) 

Figure 6. (a) First order and total sensitivity indices according to the analytical and kriging metamodel for (a) fcu 

and (b) fcm.  
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The first order index and total sensitivity indices of  and  are evaluated by employing 

the method of Saltelli (Saltelli & Chan, 2000) in conjunction with the kriging metamodel. In 

particular, the mean estimate  according to Equation (4) is used to evaluate  given the 

samples of  and . Figure 6 plots the variation of these indices with respect to the number 

of observations used to construct the metamodel. In the same figure, the estimate of the sensi-

tivity indices obtained by considering the analytical function are reported for comparison pur-

poses.  

First of all, it can be observed that if a number of support points higher than 20 is considered, 

the kriging metamodel yields the same estimate of the sensitivity indices as the true analytical 

model. Moreover,  has a very high influence on the variance of , whereas the influence 

of  and of the interaction term is negligible. The difference between the first order and the 

total sensitivity index is very low for both the input variables, and the sum of the two first order 

sensitivity indices is equal to 1. The values of the sensitivity indices evaluated by means of LSA 

according to Equation  (12) are fcu
 = 0.992 , and fcm

 =0.093. Thus, while the sensitivity index 

for  is similar to that obtained via GSA, the sensitivity index for fcm
 is much higher. 

3.2 Masonry arch 

This numerical example is based on an experimental test carried out at the University of 

Salford (Melbourne et al., 2007). The analysed structure consists of a 3 m span multi-ring brick 

masonry square arch constructed using the stretcher bonding method with a 1:4 rise-to-span 

ratio and made up of 47 courses of bricks for the lower ring and 49 courses for the top ring. A 

numerical model of the arch has been previously developed by Zhang et al. (2018b) to validate 

the mesoscale approach for brick-masonry arches. In order to reduce the computational time of 

the FE analyses, the arch is described by only one set of solid elements along its width, thus 

cuf cmf

( )ŷ x ckf

cuf cmf

cuf ckf

cmf

cuf



disregarding the masonry texture along the width of the arch. Figure 7a shows the FE model of 

the arch, which is analysed by imposing increasing vertical displacements at the nodes of the 

loaded surface at a quarter span, whereas Figure 7b illustrates the mortar interfaces between the 

bricks. 

 

  

  
(a) (b) 

Figure 7. (a) Mesoscale model for the arch, (b) mortar interfaces. 

Although dimensions and shapes of the bridge components have an important effect on the 

capacity (Oliveira et al. 2010, Cavalagli et al. 2017), in this study they are assumed as deter-

ministic, as the focus of this research is on the identification of the critical mesoscale material 

parameters which should be determined via suitable material testing to achieve accurate re-

sponse predictions. Moreover, it is envisaged that the uncertainty in the definition of the geo-

metrical characteristics of the analysed structure can be minimised through an accurate survey 

(de Arteaga and Morer 2021, Riveiro et al. 2013). The kriging metamodel is built by consider-

ing different input parameters related to the mechanical behaviour of the bricks and of the in-

terfaces that could potentially affect the response of the arch under vertical loads. Table 1 lists 

these parameters together with their range of variation. It is noteworthy that the parameters are 

assumed to be independent. While this can be a limitation, leading to an underestimation of the 

interaction effects, accounting for the correlation of the parameters would require an extension 

of the GSA methodology followed here (Li et al., 2010) which is out of the scope of the present 

study and the subject of future investigations. Nevertheless, in order to introduce some correla-

tion between the tangent and normal stiffness in the mortar interfaces, the ratio kH/kN rather than 

Loaded surface 



kH is considered as input parameter. Moreover, for describing the tensile yield behaviour, the 

ratio s0 between the actual tensile resistance of the interfaces t0 and the maximum value ac-

cording to the Mohr-Coulomb criterion (i.e., c0/tan) is specified. This prevents the consider-

ation of physically inconsistent values of the tensile resistance. A very wide range of variation 

is considered for the brick Young modulus Eb, to describe the case of bricks with very poor 

mechanical properties and high strength bricks such as engineering bricks. The range of varia-

tion of Gf,I and Gf,II is taken from Lourenço (1996). The parameters describing the compressive 

behaviour of masonry are assumed fixed and not explicitly considered for building the meta-

model since compressive failure of masonry is not envisaged. In particular, a value of 24.5 MPa 

is assumed for the interface compressive limit. The brick density is also assumed constant and 

equal to 1900 kg/m3. 

Table 1. Input parameters of the arch metamodel, relevant range of variation, mean and cov of the lognormal dis-

tribution. 

Element Type Range Mean CoV 

Brick 
Elastic modulus Eb [N/mm2] 5000-40000 16000 0.27 

Poisson's ratio vb [-] 0.1-0.4 0.15 0.2 

Mortar-Brick interface 

Normal stiffness kN [N/mm3] 3-1000 90 0.27 

Tangent to normal stiffness ratio kH/kN [N/mm3] 0.3-0.5 0.444 0.2 

Cohesion c0 [N/mm2] 0.0001-1.8 0.4 0.38 

Friction angle tan [-] 0.0001-1.5 0.5 0.2 

Tensile resistance parameter s0 [N/mm2] 0-1 0.325 0.2 

Fracture energy for tension mode GfI [N/mm2] 0.005-0.02 0.012 0.2 

Fracture energy for tension mode GfII [N/mm2] 0.01-0.25 0.125 0.2 

 

The kriging metamodel is constructed by considering as output variables the peak load ca-

pacity per unit arch width pc and the secant stiffness to 40% of the peak load capacity ksec. The 

input samples are generated using the Sobol sequence by considering a maximum number of ns 

=500 observations. For each input parameter combination, a FE analysis is performed in 

ADAPTIC (Izzuddin, 1991) to obtain the full load-displacement curve relating the reaction 

forces at the nodes subjected to the imposed displacement history and the vertical displacement 



of a node at the intrados of the arch barrel located at quarter span. Then, these curves are post-

processed to identify the values of pc and of ksec. Figure 8a shows the most recurrent failure 

mode of the arch, corresponding to the formation of a mechanism consisting of four hinges, 

whereas Figure 8b shows the corresponding contour plot of the damage in tension parameter.  

 

 
 

(a) (b) 

Figure 8. (a) Most recurrent failure mode and (b) corresponding contour plot of the damage parameter in tension. 

The set of support points generated via Sobol sampling (Sobol, 1976) yield very different 

collapse behaviours of the arch, the most interesting of which are reported in Figure 9. For 

example, the mechanism of Figure 9a and Figure 9c correspond to low values of the friction 

angle of the mortar joints (tan =0.02 and tan =0.08 respectively). The mechanism of Figure 

9b corresponds to high values of the tensile resistance, and low values of the cohesion and of 

the friction angle compared to the reference case (s0 =0.86, tan =0.16, c0 =0.20MPa). Finally, 

the mechanism of Figure 9d corresponds to very high values of the cohesion of the mortar 

interfaces (s0 =0.56, tan =0.61, c0 =1.52MPa). 

  
(a) (b)  

  
(c) (d) 

Figure 9. Different failure modes observed for the combination of the input parameters. 



The values of pc vary in the range between 0.0023 kN/mm and 0.56 kN/mm, whereas the 

values of ksec in the range between 0.0071 kN/mm2 and 0.6176 kN/mm2. A kriging metamodel 

is fitted to the input-output data by employing first-order polynomial for the global trend and 

the Gaussian correlation model of Equation (3) for . The Dace Toolbox (Lophaven et 

al., 2002) is used to find the optimal values of  and .  

Figure 10 illustrates the variation of the coefficient of determination Q2 of the kriging met-

amodels for pc and ksec with the number of training points. It can be seen that the values of Q2  

increase for increasing ns, and that for a given value of ns, the Q2 corresponding to ksec is higher 

than that of pc. Moreover, with 500 training points a very high level of accuracy is achieved. 

 
Figure 10. Variation with the number of training points of Q2 of the metamodel for the collapse load pc and the 

secant stiffness ksec. 

Figure 11 and Figure 12 show the first order sensitivity indices of the input parameters ob-

tained considering respectively the collapse load and the secant stiffness as output parameters. 

These indices have been evaluated employing the method of Saltelli (Saltelli and Chan, 200) in 

conjunction with kriging metamodel fitted by considering 250 and 500 support points. In gen-

eral, it can be observed that the estimates of the indices is not significantly affected by the 

number of support points considered, i.e., 250 samples are enough to achieve reliable estimates 

of the indices.  
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(a) (b) 

Figure 11. First order and total sensitivity indices for the collapse load obtained by considering (a) 250 samples 

and (b) 500 samples for training the metamodel. 
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(a) (b) 

Figure 12. First order and total sensitivity indices of the secant stiffness obtained by considering (a) 250 samples 

and (b) 500 samples for training the metamodel.  

As expected, the parameters that influence the most the collapse load (Figure 11) are those 

related to the resistance of the mortar interfaces. Similar results have been observed in Zhang 

et al. (2016) based on an extensive parametric study encompassing large variations of many 

parameters related to the mortar interface behaviour. The most influential parameter is the fric-

tion angle tan0, followed by the cohesion c0 and by the parameter s0, related to the tensile 

resistance. It is noteworthy that the tensile resistance of the mortar interfaces is also influenced 

by c0 and tan0, and this together with the fact that in most of the cases failure of the arch occurs 

due to formation of flexural hinges explains why these parameters are characterised by very 

high sensitivity indices. With reference to the secant stiffness (Figure 12), the most influential 



parameters in order of importance are the normal stiffness of the mortar interfaces kN, the brick 

Young modulus Eb, followed by the parameters describing the interface resistance, i.e., c, s, 

tan0. While the influence of the first two parameters is obvious, the fact that the interface 

resistance parameters influence the stiffness of the bridge is because a secant stiffness is con-

sidered, which depends on the bridge capacity. 

For the purpose of performing uncertain propagation, the input parameters employed for 

constructing the metamodel are assumed as independent random variables with a lognormal 

distribution. The mean and coefficient of variation of the distributions are reported in Table 1. 

The values adopted for many of the parameters are arbitrary, due to lack of available statistical 

data, but they are similar to those employed in other studies (Moreira et al., 2016; Moreira et 

al., 2017). In particular, the coefficient of variation (CoV) of Eb and kN are based on the works 

of (De Felice and De Santis, 2010; Kaushik et al. 2007), that of tan0 from Moreira et al. (2017), 

and that of c0 is taken from Jie et al. (2017). 

A Monte Carlo simulation is carried out in Cossan (Patelli et al. 2014) by generating 20000 

samples of the random variables, and using the fitted metamodels to estimate the probabilistic 

distribution of the collapse load and of the stiffness. Figure 13a shows and compares the ECDF 

of the collapse load obtained by considering all the random variables as uncertain with the one 

obtained by considering only c0, tan0, s0 as uncertain, and by fixing the other parameters to 

their mean values. The corresponding values of the mean and cov are reported in Table 2. It can 

be observed that the dispersion of the collapse load is quite high, and slightly higher than that 

of most of the input random variables. Moreover, considering only the parameters that influence 

the most the collapse load allows an accurate estimation of the mean and dispersion. Table 2 

reports also the results FOSM, which provides good predictions of the mean collapse load, and 

quite good estimates of dispersion.  



With reference to the secant stiffness, the ECDFs obtained accounting for all the random 

variables and assuming only Eb, kN, c0, tan0, s0 as uncertain are plotted in Figure 13b. Table 2 

provides the corresponding values of the mean and coefficient of variation. Considering the 

reduced set of uncertain variable yields again very accurate estimates of the mean value, but it 

underestimates significantly the dispersion. According to the results shown in Table 2, FOSM 

provides quite good estimates of both the mean value and the dispersion.  

a) b) 

  
Figure 13. ECDF of the collapse load (a) and of the secant stiffness (b) obtained by considering all the parameters 

of Table 2 as uncertain and only few parameters as uncertain. 

Table 2. Mean and cov of the collapse load and of the secant stiffness obtained via MCS and via FOSM. 

 pc ksec 

  Mean [kN/mm] CoV Mean [kN/mm2] CoV 

MCS-Whole set 0.044 0.241 0.0880 0.230 

MCS-Reduced set  0.045 0.213 0.0915 0.148 

FOSM 0.043 0.203 0.0899 0.267 
   

The study of Zhang et al. (2018b) has shown that significant changes in the response of 

masonry arches can be observed for different rise-to-span ratio values. For this reason, a second 

numerical model of a deep masonry arch is considered herein, corresponding to a rise-to-span 

ratio of 0.45 rather than 0.25. GSA is repeated on the kriging metamodel of the deep arch, 

constructed by considering ns = 500 support points. All the other parameters of the model are 

the same as those of the arch analysed previously. Figure 14a shows the most recurrent failure 
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mode of the deep arch, which is very similar to that of the shallow arch (Figure 8), and Figure 

14b shows the corresponding contour plot of the damage parameter in tension. 

a) b)  

 
 

Figure 14. a) Most recurrent failure mode and b) corresponding contour plot of the damage parameter in tension. 

The results of GSA, applied by considering the collapse load and the secant stiffness as out-

put parameters, are reported respectively Figure 15a and Figure 15b. The sensitivity indices are 

very similar to those of the shallow arch, reported in Figure 11b and Figure 12b.  

a) b) 

  
Figure 15. First order sensitivity indices for the collapse load (a) and the secant stiffness (b) of the arch with rise-

to-span ratio of 0.45 obtained by considering 500 samples for training the metamodel. 

3.3 Masonry arch bridge  

This numerical example is based on a single-span bridge model tested at the University of 

Salford (Melbourne et al., 2007). The 3 m span two-ring arch barrel was built according with 

the stretcher method in a segmental circular shape on massive concrete foundations. The arch 

is 215 mm thick and is characterised by a rise-to-span ratio of 0.25 with a springing angle of 

37°. The spandrel and the wing walls are made of English bond brick-masonry. Full size class 

A engineering bricks and a 1:2:9 (cement:lime:sand) mortar were used for the brickwork, while 
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50 mm graded crushed limestone was adopted for the backfill, filling the space above the arch 

and between the two lateral walls (spandrel and wing walls). The bridge was tested by applying 

a load at quarter span until collapse. The spandrel walls are detached from the arch barrel and 

only provide transverse confinement to the backfill. This allows an efficient description of the 

test with a strip model characterised by only one set of solid elements along the width of the 

bridge specimen for the arch and the backfill meshes. Further information regarding the model 

and the validation of the experimental results can be found in Zhang et al. (2018a).  

Figure 16a shows the FE model of the bridge, including the arch barrel and the backfill, 

whereas Figure 16b illustrates the mortar interfaces between the bricks and the interfaces be-

tween the arch barrel extrados and the backfill. The bridge is analysed by imposing increasing 

vertical displacements in correspondence of the nodes belonging to the surface at the bridge 

extrados highlighted in Figure 16a. 

 

 

 
(a) (b) 

Figure 16. (a) FE strip model for masonry bridge, (b) mortar and arch barrel-backfill interfaces. 

The input parameters used to build the kriging metamodel replacing the bridge FE model are 

reported in Table 3, and concern the mechanical properties of the bricks, the mortar interfaces, 

the backfill, and the arch barrel-backfill interface. Only the input properties of the bricks and 

mortar interfaces that have been found to be most influential from the sensitivity study of the 

masonry arch are considered to vary, whereas the others are kept fixed. In addition, some pa-

rameters that could have some influence on the bridge capacity such as the backfill weight have 

been kept fixed to limit the dimension of the metamodel. Table 3 also shows the range of vari-

ation considered for building the kriging metamodel and for the sensitivity study.  

Loaded surface 



Table 3. Input parameters of the bridge metamodel, relevant range of variation, mean and cov of the lognormal 

distribution. 

Element Type Range Mean CoV 

Brick Elastic modulus Eb [N/mm2] 5000-40000 35000 0.27 

Mortar-Brick interface 

Normal stiffness kN [N/mm3] 3-1000 400 0.2 

Cohesion c0 [N/mm2] 0.0001-1.8 0.29 0.38 

Friction angle tan [-] 0.0001-1.5 0.5 0.2 

Tensile resistance parameter s0 [-] 0-1 0.345 0.2 

Backfill 

Elastic modulus Ef [N/mm2] 20-500 200 0.2 

Poisson’s ratio vf  [-] 0.1-0.499 0.2 0.2 

Cohesion cf [N/mm2] 0.0001-0.2 0.001 0.2 

Friction angle tanf [-] 0.466-1.428 0.960 0.2 

Arch barrel-Backfill interface 

Cohesion ci [N/mm2] 0.0001-0.1 0.001 0.2 

Friction angle tani [-] 0.466-1.732 0.6 0.2 

Tensile resistance parameter si [N/mm2] 0-1 0.6 0.2 

  

The model output variables are the peak load capacity per unit bridge width pc and the stiff-

ness secant to 40% of the peak load capacity ksec. The same procedure employed for the masonry 

arch is followed here to construct the kriging metamodel, for a total of ns =1000 support points. 

In particular, the kriging metamodel for pc has been built by considering a 0th-order polynomium 

for describing the global trend and a Matérn correlation function, available in the ooDACE 

toolbox (Couckuyt et al., 2014), for ( ),l mR x x . The metamodel for ksec has been built by con-

sidering a 1st-order polynomium and a Gaussian correlation function. The values of pc for the 

various support points vary in the range between 0.0055 kN/mm and 1.36 kN/mm, whereas the 

values of ksec in the range between 0.0066 kN/mm2 and 0.841 kN/mm2. The values of Q2 cor-

responding to the metamodels for pc and ksec are respectively equal to 0.80 and 0.91. 

The most recurrent failure mode of the bridge, highlighted in Figure 17a, corresponds to the 

formation of a mechanism consisting of four hinges whose location is very similar to that of the 

bare arch (Figure 8a). Figure 17b and Figure 17c show the contour plot of respectively the 

damage parameter in tension and the Von Mises plastic stresses in the backfill at collapse. It is 

observed that the backfill contributes significantly to the resistance of the bridge, spreading the 



loads applied on the surface of the backfill, and providing transverse resistance and passive 

pressure to the deformed arch. A more in-depth analysis of the mechanism involved in the 

bridge collapse can be found in Zhang et al. (2018a). 

 (a) 

  

 (b) 

 (c) 
Figure 17. (a) Most recurrent failure mode, (b) corresponding contour plot of the damage parameter in ten-

sion and (c) equivalent von Mises plastic deformations in the backfill. 

 

The application of GSA allows the derivation of the first order sensitivity indices reported 

in Figure 18 and Figure 19, and referring to the collapse load (Figure 18) and to the secant 

stiffness (Figure 19). With reference to the first, the most influential input parameters are in 

order of importance: the backfill cohesion cf, the friction angle of the mortar interfaces tan, 

the young modulus of the backfill Ef, the friction angle of the backfill tanf, and the cohesion 

of the mortar interfaces c0. These results confirm the important contribution to the bridge re-

sistance played by the backfill, and especially by the cohesion, that controls the collapse load. 

The number of support points employed for fitting the metamodel has a negligible influence on 

the sensitivity analysis results, if more than 500 samples are considered for training the meta-

model. In fact, the sensitivity analysis results obtained with ns =500 and ns = 1000 are very 

similar to each other.  



With reference to the secant stiffness, the input parameters with highest indices of sensitivity 

are Eb, kN, followed by Ef, and cf and c0. Thus, the stiffness of the arch influences more signifi-

cantly the global stiffness than the backfill stiffness. This result might be related to the fact that 

a very wide range of variation has been chosen for the brick Young modulus and for the mortar 

interfaces stiffness. The observed sensitivity analysis results are consistent with those observed 

in Zhang et al. (2018a), where only variations of the backfill properties were considered, show-

ing that cf is the parameter that affects the most the bridge capacity, followed by Ef, and tanf,. 
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Figure 18. First order and total sensitivity index of the collapse load obtained by considering (a) 500 samples and 

(b) 1000 samples for training the metamodel. 
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Figure 19. First order and total sensitivity index of the secant stiffness obtained by considering (a) 500 samples 

and (b) 1000 samples for training the metamodel. 



Uncertainty propagation is carried out for this model based on the probabilistic distributions 

reported in Table 3. The lognormal distribution characterising the friction angle tanf is trun-

cated to the value of 1.047 to avoid excessive angles of friction above 60°. The ECDFs of the 

collapse load obtained by considering all the random variables as uncertain and the one obtained 

by considering only cf, tan, Ef, and tanf and c0 as uncertain are illustrated in Figure 20a. The 

corresponding values of the mean and coefficient of variation are given in Table 4, which also 

reports the values estimated via FOSM. In general, the CoV of the collapse load is quite high, 

and close to 0.4. Neglecting the uncertainty of the least influential parameters does not affect 

the estimate of the mean and of the dispersion. On the other hand, FOSM provides good esti-

mates of the first moment of the collapse load, but overestimates the second one. 

The ECDFs of the secant stiffness, plotted in Figure 20b, are estimated by accounting for all 

the random variables and by assuming only Eb, kN, Ef, and cf and c0 as uncertain. The CoV is 

lower than that of the collapse load. Considering the reduced set of uncertain variable yields 

again quite good estimates of the mean value, but underestimates the dispersion. According to 

the results shown in Table 4, FOSM slightly overestimates the mean value of the secant stiff-

ness, while it underestimate the dispersion. 

a) b) 

  
Figure 20. ECDF of the collapse load (a) and of the secant stiffness (b) obtained by considering all the pa-

rameters of Table 3 as uncertain and only few parameters as uncertain. 
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Table 4. Mean and cov of the collapse load and of the secant stiffness obtained via MCS and via FOSM. 

  pc ksec 

  Mean [kN/mm] CoV Mean [kN/mm2] CoV 

Whole set 0.225 0.382 0.345 0.205 

Reduced set  0.219 0.390 0.363 0.179 

FOSM 0.210 0.512 0.378 0.174 

 

 

4 Conclusions 

In this study, a global sensitivity analysis (GSA) of the behaviour of masonry arch bridges 

under vertical loading is carried out employing the method of Sobol, allowing the identification 

of the most influential mechanical parameters. An advanced mesoscale modelling strategy is 

used to describe the masonry arch bridge behaviour, and a kriging metamodel is employed to 

replace the computationally expensive finite element models for the purpose of carrying out the 

numerous simulations required by GSA.  

The efficiency of the proposed approach is demonstrated first by considering an analytical 

example, and by comparing the estimates of the sensitivity indices obtained by using the meta-

model and the analytical function. Subsequently, two different case studies are analysed, con-

sisting respectively in a masonry arch for two different values of the rise-to-span ratio, and in a 

masonry arch bridge. The output parameters of interest are the load capacity, related to the 

ultimate bridge behaviour, and the secant stiffness, related to the bridge serviceability. 

The results of the application of GSA to the masonry arch models show that: 

- The parameters that influence the arch load capacity most related to the backfill proper-

ties, specifically are the friction angle tan, followed by the cohesion c and the param-

eter s associated with to the tensile resistance. 

- The parameters that control the secant stiffness are the brick Young’s modulus Eb and 

the mortar interfaces normal stiffness, kN, followed by the parameters that control the 

mortar resistance. 



- The sensitivity to the mechanical parameters of the arch is not significantly affected by 

the rise-to-span ratio, i.e., the values of the sensitivity indices for the deep arch are very 

similar to those of the shallow one. 

The results of the application of GSA to the masonry arch bridge show that: 

- The load capacity is significantly affected by the cohesion of the backfill, whereas the 

parameters related to the arch characteristics are less important. Thus, the description of 

the behaviour of the backfill through an appropriate model and an accurate characterisa-

tion of the backfill model parameters and of their uncertainty is of paramount importance 

for the bridge capacity assessment. Moreover, retrofit strategies aimed at improving the 

properties of the backfill are expected to lead to a significant increase of the bridge ulti-

mate capacity compared to other techniques aimed at improving the arch response. 

- The secant stiffness depends significantly on the parameters influencing the arch stiff-

ness, i.e. the brick young modulus Eb and the mortar interfaces normal stiffness, kN. The 

Young’s modulus of the soil Ef has a lower sensitivity index. 

Finally, it has been shown that good estimates of the mean response of interest are obtained 

by considering only few influential parameters as random, assuming the others as deterministic. 

A higher number of parameters has to be assumed as uncertain for the purpose of estimating 

the response dispersion. The first-order-second-moment technique provides reasonably good 

response estimates for the problems investigated in this study.  

The procedure proposed for the sensitivity analysis and uncertain propagation, and the re-

sults of the analyses, are relevant to the management of masonry arch bridges, in particular for 

maintenance activities, such as rehabilitation, strengthening and replacement. Future studies 

will aim at addressing the sensitivity of the bridge response for other type of loadings such as 

those induced by floods, requiring the use of more complex three-dimensional bridge models.  
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