26 research outputs found

    A K -means Interval Type-2 Fuzzy Neural Network for Medical Diagnosis

    Get PDF
    Abstract(#br)This paper proposes a new medical diagnosis algorithm that uses a K -means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K -means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training data are classified into k groups using the K -means clustering algorithm and these data groups are then used sequentially to train the structure of the k classifiers for the interval type-2 fuzzy neural network (IT2FNN). The test data are also initially used to determine to which classifier they are best suited and then they are inputted into the corresponding main classifier for classification. The parameters for the proposed IT2FNN are updated using the steepest descent gradient..

    Effectiveness of perindopril/amlodipine fixed-dose combination in the treatment of hypertension: a systematic review

    Get PDF
    Background: Uncontrolled blood pressure is a major risk factor for cardiovascular diseases. Fixed-dose combination (FDC) therapy offers a promising approach to addressing this challenge by providing a convenient single-tablet solution that enhances the effectiveness of blood pressure control. In our systematic review, we assess the effectiveness of perindopril/amlodipine FDC in managing blood pressure.Methods: We conducted a comprehensive search across four primary electronic databases, namely, PubMed, Virtual Health Library (VHL), Global Health Library (GHL), and Google Scholar, as of 8 February 2022. Additionally, we performed a manual search to find relevant articles. The quality of the selected articles was evaluated using the Study Quality Assessment Tools (SQAT) checklist from the National Institute of Health and the ROB2 tool from Cochrane.Results: Our systematic review included 17 eligible articles. The findings show that the use of perindopril/amlodipine FDC significantly lowers blood pressure and enhances the quality of blood pressure control. Compared to the comparison group, the perindopril/amlodipine combination tablet resulted in a higher rate of blood pressure response and normalization. Importantly, perindopril/amlodipine FDC contributes to improved patient adherence with minimal side effects. However, studies conducted to date have not provided assessments of the cost-effectiveness of perindopril/amlodipine FDC.Conclusion: In summary, our analysis confirms the effectiveness of perindopril/amlodipine FDC in lowering blood pressure, with combination therapy outperforming monotherapy and placebo. Although mild adverse reactions were observed in a small subset of participants, cost-effectiveness assessments for this treatment remain lacking in the literature

    Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles

    No full text
    Background and Objectives: Clathrin is an adaptor protein that serves as the principal element of the vesicle-coating complex and is important for the membrane cleavage to dispense the invaginated vesicle from the plasma membrane. The functional loss of clathrins has been tied to a lot of human diseases, i.e., neurodegenerative disorders, cancer, Alzheimer's diseases, and so on. Therefore, creating a precise model to identify its functions is a crucial step towards understanding human diseases and designing drug targets. Methods:We present a deep learning model using a two-dimensional convolutional neural network (CNN) and position-specific scoring matrix (PSSM) profiles to identify clathrin proteins from high throughput sequences. Traditionally, the 2D CNNs take images as an input so we treated the PSSM profile with a 20 × 20 matrix as an image of 20 × 20 pixels. The input PSSM profile was then connected to our 2D CNN in which we set a variety of parameters to improve the performance of the model. Based on the 10-fold cross-validation results, hyper-parameter optimization process was employed to find the best model for our dataset. Finally, an independent dataset was used to assess the predictive ability of the current model.Results:Our model could identify clathrin proteins with sensitivity of 92.2%, specificity of 91.2%, accuracy of 91.8%, and MCC of 0.83 in the independent dataset. Compared to state-of-the-art traditional neural networks, our method achieved a significant improvement in all typical measurement metrics. Conclusions:Throughout the proposed study, we provide an effective tool for investigating clathrin proteins and our achievement could promote the use of deep learning in biomedical research. We also provide source codes and dataset freely at https://www.github.com/khanhlee/deep-clathrin/.Accepted versio

    Frequency-Dependent Contrast Enhancement for Conductive and Non-Conductive Materials in Electrical Impedance Tomography

    No full text
    This research investigates the critical role of frequency selection in Electrical Impedance Tomography (EIT), a non-invasive imaging technique that reconstructs internal conductivity distributions through injected electrical currents. Empirical frequency selection is paramount to maximizing the fidelity and specificity of EIT images. The study explores the impact of distinct frequency ranges—low, medium, and high—on image contrast and clarity, particularly focusing on differentiating conductive materials from non-conductive materials. The findings reveal distinct empirical frequency bands for enhancing the respective contrasts: 15–38 kHz for conductive materials (copper) and 45–75 kHz for non-conductive materials (acrylic resin). These insights shed light on the frequency-dependent nature of material contrast in EIT images, guiding the selection of empirical operating ranges for various target materials. This research paves the way for improved sensitivity and broader applicability of EIT in diverse areas

    Chaotic Synchronization Using a Self-Evolving Recurrent Interval Type-2 Petri Cerebellar Model Articulation Controller

    No full text
    In this manuscript, the synchronization of four-dimensional (4D) chaotic systems with uncertain parameters using a self-evolving recurrent interval type-2 Petri cerebellar model articulation controller is studied. The design of the synchronization control system is comprised of a recurrent interval type-2 Petri cerebellar model articulation controller and a fuzzy compensation controller. The proposed network structure can automatically generate new rules or delete unnecessary rules based on the self-evolving algorithm. Furthermore, the gradient-descent method is applied to adjust the proposed network parameters. Through Lyapunov stability analysis, bounded system stability is guaranteed. Finally, the effectiveness of the proposed controller is illustrated using numerical simulations of 4D chaotic systems

    Robust Fault Estimation Using the Intermediate Observer: Application to the Quadcopter

    No full text
    In this paper, an actuator fault estimation technique is proposed for quadcopters under uncertainties. In previous studies, matching conditions were required for the observer design, but they were found to be complex for solving linear matrix inequalities (LMIs). To overcome these limitations, in this study, an improved intermediate estimator algorithm was applied to the quadcopter model, which can be used to estimate actuator faults and system states. The system stability was validated using Lyapunov theory. It was shown that system errors are uniformly ultimately bounded. To increase the accuracy of the proposed fault estimation algorithm, a magnitude order balance method was applied. Experiments were verified with four scenarios to show the effectiveness of the proposed algorithm. Two first scenarios were compared to show the effectiveness of the magnitude order balance method. The remaining scenarios were described to test the reliability of the presented method in the presence of multiple actuator faults. Different from previous studies on observer-based fault estimation, this proposal not only can estimate the fault magnitude of the roll, pitch, yaw, and thrust channel, but also can estimate the loss of control effectiveness of each actuator under uncertainties

    ROBUST MPPT OBSERVER-BASED CONTROL SYSTEM FOR WIND ENERGY CONVERSION SYSTEM WITH UNCERTAINTIES AND DISTURBANCE

    No full text
    The problem of tracking the maximum power point for the wind energy conversion system (WECS) is taken into consideration in this paper. The WECS in this article is simultaneously affected by the uncertainties and the arbitrary disturbance that cause the WECSs to be much more challenging to control. A new method to synthesize a polynomial disturbance observer for estimating the aerodynamic torque, wind speed, and electromagnetic torque without using sensors is proposed in this paper. Unlike the previous methods, in this work, both the uncertainties and the disturbance are estimated, then estimations of the uncertainties and disturbance are transmitted to the Linear Quadratic Regulator (LQR) controller for eliminating the influences of the uncertainties and disturbance; and tracking the optimal power point of WECS. It should be noted that the uncertainties in this work are time-varying and both uncertainties and disturbance do not need to satisfy the bounded constraints. The wind speed and aerodynamic torque are arbitrary and unnecessary to fulfill the low-varying constraint or r th time derivative bound. On the basis of Lyapunov methodology and the sum-of-square technique (SOS), the main theorems are derived to design the polynomial disturbance observer. Finally, the simulation results are provided to demonstrate the effectiveness and merit of the proposed method

    Firm Risk and Tax Avoidance in Vietnam: Do Good Board Characteristics Interfere Effectively?

    No full text
    This paper investigates the role of board characteristics in the relationship between tax avoidance behavior and corporate risk tolerance to elucidate the importance of corporate governance mechanisms. The applied methodology is System-GMM for 334 listed corporations in Vietnam from 2008 to 2020 to avoid endogenous problems in our models. The main findings are that higher (lower) corporate risk-taking is related to higher (lower) corporate tax avoidance if the size of the board of directors and the supervisory board are larger (lower) than six and three members, respectively. Furthermore, if the board independence ratio is lower than 48.63%, an increase in corporate risk-taking leads to increased tax avoidance. Our results support the argument that the influence of corporate risk-taking on tax avoidance behavior is governed by governance structure. Therefore, the practical implications will be towards building the optimal governance mechanism for enterprises in Vietnam

    Quadrotor Formation Control via Terminal Sliding Mode Approach: Theory and Experiment Results

    No full text
    This article presents a formation tracking control method for the operation of multi-agent systems under disturbances. This study aims to ensure that the followers of a quadcopter converge into the desired formation while the center formation of the follower quadcopters tracks the leader’s trajectory within a finite time. The distributed finite-time formation control problem is first investigated using the fast terminal sliding mode control (FTSMC) theory. A disturbance observer is then integrated into the FTSMC to overcome the model uncertainties and bounded disturbances. Subsequently, the Lyapunov function is proposed to ensure the stability of the system. It is shown that formation tracking control can be achieved even in the presence of disturbances. Simulation and experimental results verify the effectiveness of the proposed formation tracking control method compared to existing ones
    corecore