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Abstract This paper proposes a new medical diagnosis

algorithm that uses a K-means interval type-2 fuzzy neural

network (KIT2FNN). This KIT2FNN classifier uses a K-

means clustering algorithm as the pre-classifier and an

interval type-2 fuzzy neural network as the main classifier.

Initially, the training data are classified into k groups using

the K-means clustering algorithm and these data groups are

then used sequentially to train the structure of the k classi-

fiers for the interval type-2 fuzzy neural network

(IT2FNN). The test data are also initially used to determine

to which classifier they are best suited and then they are

inputted into the corresponding main classifier for classi-

fication. The parameters for the proposed IT2FNN are

updated using the steepest descent gradient approach. The

Lyapunov theory is also used to verify the convergence and

stability of the proposed method. The performance of the

system is evaluated using several medical datasets from the

University of California at Irvine (UCI). All of the

experimental and comparison results are presented to

demonstrate the effectiveness of the proposed medical

diagnosis algorithm.

Keywords Classification problem � Interval type-2 fuzzy

neural network � K-means clustering algorithm � Medical

diagnosis

1 Introduction

The K-means clustering method was first introduced by

Steinhaus in 1956 [1]. It is used to arrange data into

specific groups or clusters based on their characteristics, so

that data in the same group will have similar characteristics

or features. Recently, because large amounts of data can be

more easily processed, the K-means algorithm has been

widely used for data mining, pattern recognition, decision

support and machine learning [2–4]. In 2011, Singh et al.

noted the evolving limitations in K-means algorithm in data

mining applications [5]. In 2017, Jiang et al. proposed a

method of pattern recognition for acoustic emission signals

based on K-means clustering [6]. In 2018, Tuncer and

Alkan proposed a decision support system for the detection

of renal cell cancer [7]. However, K-means algorithms

have some disadvantages such as their sensitivity to noisy

data and outlier, and the number of clusters must be

specified in advance [3, 8].

In the past decade, fuzzy logic has been widely used in

many fields such as control problems, system identification,

prediction, energy and so on. The type-1 fuzzy logic sys-

tem (T1FLS) was first introduced by Zadeh in 1965 [9].

Zadeh subsequently proposed the concept of type-2 fuzzy

logic system (T2FLS) in 1975 [10]. This deals with

uncertainties more efficiently than the T1FLS. However,
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because of its complexity of computation, the T2FLS was

not widely applied in the early stages. In 2000, Liang and

Mendel developed the interval type-2 fuzzy logic system

(IT2FLS) [11], which only considers the upper and lower

grades of the type-2 membership function (T2MF), so it is

easier to implement and the computational load is reduced.

Recently, the IT2FNN has been successfully applied in

various fields [12–16].

The rapid development of technology leads to computer-

aided diagnosis (CAD) systems allowing a faster and more

accurate medical diagnosis. In 2016, Guan et al. proposed a

self-validating cerebellar model neural network for com-

puter-aided diagnosis of breast tumors [17]. In 2018, Zhou

et al. used a functional link-based fuzzy brain emotional

learning network to classify breast tumors [18]. Many

studies also focus on the diagnosis of heart disease and

fetal cardiotocography. In 2016, Dwivedi evaluated the

performance of different machine learning techniques in

the prediction of heart disease [19]. In 2017, Liu et al.

proposed a hybrid classification system for the diagnosis of

heart disease using the relief and rough set method [20]. In

2016, Yılmaz proposed the artificial neural networks for

fetal state assessment from cardiotocography data [21]. In

2017, Mandal presented a clinical healthcare enterprise

system using machine learning algorithms [22]. However,

these diagnosis methods are complex and the diagnostic

performance can be further improved.

This study proposes a new method for medical diagnosis

that uses a K-means interval type-2 fuzzy neural network

(KIT2FNN). This method combines a K-means clustering

algorithm and an interval type-2 fuzzy neural network

(IT2FNN). The K-means algorithm classifies the training

data into k groups, depending on their characteristics.

These groups are then used to train the IT2FNN for the

k classifiers. Using the K-means algorithm, the test data are

again processed to be classified to the most pertinent

IT2FNN classifiers, and then they are inputted into the

corresponding classifier for classification. Using this

method of 2-layer classification, the performance of the

proposed classifier is comparable to that for some state-of-

the-art methods. To demonstrate the effectiveness of the

proposed diagnostic KIT2FNN, numerical experiments are

conducted using real-world medical datasets. The data

using in this study include the breast cancer, the heart

disease and the fetal cardiotocography, which are provided

by the University of California at Irvine (UCI).

The comparisons show that the results of this study are

more accurate than those of previous studies [17, 19–23],

and the method is easily applied to medical diagnosis. The

major contributions of this study are (i) the design of the K-

means IT2FNN classifier for medical diagnosis; (ii) the

design of the adaptive laws for updating the network

parameters to guarantee stable convergence for the system;

and (iii) the numerical experiments using the medical

datasets illustrate the effectiveness of the proposed

approach.

The remainder of this paper is organized as follows.

Section 2 presents the structure of K-means IT2FNN

classifier. The algorithm for learning the parameters is

illustrated in Sect. 3. The numerical experiments using

medical datasets are presented in Sect. 4. Finally, conclu-

sions are given in Sect. 5.

2 K-means Interval Type-2 Fuzzy Neural Network

Figures 1 and 2 respectively show the training and testing

processes for the proposed K-means IT2FNN classifier,

which comprises a K-means pre-classifier and an IT2FNN

as the main classifier.

2.1 The K-means Clustering Algorithm

A K-means clustering algorithm separates data into dif-

ferent clusters so that the data in each cluster have the

similar characteristics. When the data and the expected

number of clusters are inputted, the center of each cluster is

determined and each data point is assigned to a specific

cluster. The minimum distance from each point to all

center points is

J ¼
Xnj

j¼1

Xni

i

x
j
i � cj

�� ��2 i ¼ 1; 2; . . .; ni j ¼ 1; 2; . . .; nj;

ð1Þ

Fig. 1 The training process operation of the K-means IT2FNN

classifier
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where x
j
i � cj

�� ��2 is the algebraic distance between a data

point position x
j
i and the cluster center cj. Figure 3 shows

the flowchart for the K-means clustering algorithm, which

has the following steps:

Step 1: Initialize the k center points.

Step 2: Calculate the distance between each point and

the k center points.

Step 3: Assign each point to a cluster (based on the

distance).

Step 4: Stop if the assignment is not changed.

Step 5: Update the new position for the k center points

(average of each cluster).

Step 6: Go to step 2.

2.2 The Interval Type-2 Fuzzy Neural Network

Figure 4 shows a block diagram of the proposed IT2FNN

classification system, for which the adaptive parameter are

derived using the gradient descent method and the error

feedback system. Figure 5 shows the structure of the

IT2FNN.

The IT2FNN realizes the fuzzy inference rules as

follows:

Rule j: IF I1 is ~l1j and. . . and Ii is ~lij and. . . and In is ~lnj

THEN oj ¼ ~wjk ð2Þ

where i ¼ 1; . . .; ni; j ¼ 1; . . .; nj and k ¼ 1; . . .; nk are

the indices for the ith fuzzy input, the jth rule and the kth

output. ~lij and ~wjk respectively denote the type-2 fuzzy

membership function for the input and the output weights.

Figure 5 shows that the structure of the IT2FNN has six

layers. The detailed mathematical functions for each layer

are described as

Layer 1 (input layer) In this layer, a crisp input variable

is fed into the membership function layer. Note that these

are directly transferred into the next layer without any

computation.

Layer 2 (membership function layer) In this layer, the

input is fed into the type-2 Gaussian membership function

~lij ¼ l
ij

�lij
h i

, which has a fixed mean and an uncertain

standard deviation ~rij ¼ rij �rij
� �

. The upper and lower

membership functions are

�lij ¼ exp � 1

2

Ii � mij

�rij

� �2
( )

ð3Þ

l
ij
¼ exp � 1

2

Ii � mij

rij

 !2
8
<

:

9
=

;; ð4Þ

Fig. 2 The testing process operation of the K-means FIT2FNN

classifier

Fig. 3 The K-means clustering flowchart Fig. 4 Classification scheme using K-means IT2FNN
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where �rij, rij and mij are the upper standard deviation, the

lower standard deviation and the mean of the type-2

Gaussian membership function, respectively.

Layer 3 (firing layer) This layer performs a fuzzy meet

operation for all elements in the same block j. The firing of

the jth rule Fj ¼ f
j
; �fj

h i
can be computed by

�fj ¼
Yni

i¼1

�lij ð5Þ

f
j
¼
Yni

i¼1

l
ij
: ð6Þ

Layer 4 (output weight layer) This layer performs the

consequent part of the IT2FNN, which is known as the

weights of the network. The initial values of the weights

are randomly established and are then updated by param-

eter learning. The interval value for the weight is

~wjk ¼ wjk �wjk

h i
, where �wjk is the upper value and wjk is the

lower value.

Layer 5 (pre-output layer) The output of this layer is the

combination of the outputs of layers 3 and 4 using a center-

of-gravity algorithm. This is also known as the defuzzifi-

cation operation. The Karnik–Mendel (KM) algorithm in

[24] is used to adjust the contribution of the firing strength.

The defuzzification output is

ylk ¼
Pnj

j¼1 f
l
j wjkPnj

j¼1 f
l
j

ð7Þ

yrk ¼
Pnj

j¼1 f
r
j �wjkPnj

j¼1 f
r
j

: ð8Þ

The KM algorithm is applied to find the switch points L

and R, so f lj and f rj are obtained as

f lj ¼
�fj; j� L

f
j
; j[ L

(
ð9Þ

f rj ¼
f
j
; j�R

�fj; j[R

(
: ð10Þ

Layer 6 (output layer) The final output of the IT2FNN is

obtained by applying an average operation to the interval

value ylk; yrk
� �

in the previous layer

ykIT2FNN ¼ hardlim
ylk þ yrk

2

� �
: ð11Þ

Because the prediction results have only two states,

disease or not a disease, the hard-limit transfer function is

used at the final output of the IT2FNN to describe the state

of the samples. All of the initial parameters for the IT2FNN

are randomly assigned. The adaptive laws for updating

network parameters are introduced in the following section.

3 The Parameter Learning Algorithm for IT2FNN

The classification problem involves minimizing the feed-

back error between the desired output yd and the final

output of the K-means IT2FNN yIT2FNN. As shown in

Fig. 4, the structure of IT2FNN is trained using the prior

dataset, which includes the sets of input that correspond to

the desired output. When the training process is complete,

the performance of the proposed classifier is evaluated

using a test dataset.

The Lyapunov cost function is

EðkÞ ¼ 1

2
e2 kð Þ; ð12Þ

where e kð Þ is the output error, which is obtained by

e kð Þ ¼ yd kð Þ � yIT2FNN kð Þ: ð13Þ

The gradient descent approach is then used to minimize

the change in the Lyapunov cost function

_EðkÞ ¼ e kð Þ _e kð Þ: ð14Þ

Using the gradient descent method and the chain rule,

the online tuning laws for the parameters ŵjk; �̂wjk; m̂ij; r̂ij;

�̂rij are described as

ŵjk k þ 1ð Þ ¼ ŵjk tð Þ � ĝw
o _EðkÞ
oŵjk

¼ ŵjk kð Þ þ 1

2
ĝwe kð Þ

f ljPnj
j¼1 f

l
j

ð15Þ

Fig. 5 Architecture of the IT2FNN classifier
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�̂wjk k þ 1ð Þ ¼ �̂wjk kð Þ � ĝw
o _EðkÞ
o �̂wjk

¼ �̂wjk kð Þ þ 1

2
ĝwe kð Þ

f rjPnj
j¼1 f

r
j

ð16Þ

m̂ij kþ 1ð Þ ¼ m̂i
j kð Þ� ĝm

o _EðkÞ
om̂ij

¼ m̂i
j kð Þ

þ 1

2
ĝme kð Þ

wjk � ylk

� �

Pnj
j¼1 f

l
j

of lj

om̂ij

þ
�wjk � yrk
	 

Pnj

j¼1 f
r
j

of rj

om̂ij

0

@

1

A

ð17Þ

�̂rij tþ 1ð Þ ¼ �̂rij tð Þ � ĝr
o _EðkÞ
o �̂rij

¼ �̂rij tð Þ

þ 1

2
ĝre tð Þ

wjk � ylk

� �

Pnj
j¼1 f

l
j

of lj

o �̂rij
þ

�wjk � yrk
	 

Pnj

j¼1 f
r
j

of rj

o �̂rij

0
@

1
A

ð18Þ

r̂ij tþ 1ð Þ ¼ r̂ij tð Þ� ĝr
o _EðkÞ
or̂ij

¼ r̂ij tð Þ

þ 1

2
ĝre tð Þ

wjk � ylk

� �

Pnj
j¼1 f

l
j

of lj

or̂ij
þ

�wjk � yrk
	 

Pnj

j¼1 f
r
j

of rj

or̂ij

0
@

1
A:

ð19Þ

where ĝq; ĝm; and ĝr are the learning rates for the param-

eter adaptive laws. When the KM algorithm is used, the

terms f lj and f rj in (15)–(19) are re-expressed as f
j
or �fj.

of
j

om̂ij

¼
of

j

oli
j

oli
j

om̂ij

¼ f
j

xj � m̂ij

r̂ij
	 
2 ;

o�fj
om̂ij

¼
o�fj
o�lij

o�lij
om̂ij

¼ �fj
xj � m̂ij

�̂rij
	 
2

ð20Þ

of
j

o �̂rij
¼

of
j

oli
j

oli
j

o �̂rij
¼ f

j

xj � m̂ij

	 
2

�̂rij
	 
3 ;

o�fj

o �̂rij
¼

o�fj
o�lij

o�lij
o �̂rij

¼ �fj
xj � m̂ij

	 
2

�̂rij
	 
3

ð21Þ

of
j

or̂ij
¼

of
j

oli
j

oli
j

or̂ij
¼ f

j

xj � m̂ij

	 
2

r̂ij
	 
3 ;

o�fj
or̂ij

¼
o�fj
o�lij

o�lij
or̂ij

¼ �fj
xj � m̂ij

	 
2

r̂ij
	 
3

ð22Þ

Using these adaptive laws, the K-means IT2FNN gives

the desired performance.

Proof of convergence

VðkÞ ¼ EðkÞ ¼ 1

2
e2 kð Þ: ð23Þ

Therefore,

DVðkÞ ¼ Vðk þ 1Þ � VðkÞ ¼ 1

2
e2ðk þ 1Þ � e2ðkÞ
� �

: ð24Þ

Applying the Taylor expansion and linearization tech-

niques gives

e(k þ 1) ¼ eðkÞ þ DeðkÞ ffi eðkÞ þ oeðkÞ
oŵj

" #
Dŵj: ð25Þ

From (15),

oeðkÞ
oŵj

¼ � 1

2

f ljPnj
j¼1 f

l
j

¼ w: ð26Þ

Using (26) and (15), (25) can be rewritten as

eðk þ 1Þ ¼ eðkÞ � w ĝweðkÞwð Þ ¼ eðkÞ 1� ĝww
2

� �
: ð27Þ

From (27), (24) becomes

DVðkÞ ¼ 1

2
e2ðkÞ 1� gww

2
	 
2�1
h i

¼ 1

2
e2ðkÞ ĝww

2
	 
2�2ĝww

2
h i

¼ 1

2
ĝwe

2ðkÞw2 ĝww
2 � 2

	 

:

ð28Þ

This result shows that if the learning rates are chosen

such that 0\ĝw\ 2
w2, then DVðkÞ\0, so the stability of the

system is guaranteed. The values for ĝm and ĝr can be

proved using a similar method.

4 Experimental Results and Discussion

To evaluate the system performance, the accuracy (ACC),

the sensitivity (SEN) and the specificity (SPE) of the

medical diagnosis system are measured. To allow a fair

comparison and to allow the use of average values, the

experiments are conducted 100 times using random sam-

ples for the training and testing processes.

The evaluation indices are defined as

ACC ¼ TPþ TN

TNþ TPþ FPþ FN
� 100% ð29Þ

SEN ¼ TP

TPþ FN
� 100% ð30Þ

SPE ¼ TN

TNþ FP
� 100%; ð31Þ

where TP: (True Positives) the patient has the disease and

the outcome of the prediction is correct; TN: (True Nega-

tives) the patient does not have the disease and the outcome

of the prediction is correct; FP: (False Positives) the patient
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has the disease but the outcome of the prediction is not a

disease; FN: (False Negatives) the patient does not have the

disease but the outcome of the prediction is a disease.

4.1 Wisconsin Breast Cancer Dataset

The effectiveness of the K-means IT2FNN classifier is

tested using the Wisconsin breast cancer dataset (WBCD),

which is provided by the University of California at Irvine

(UCI). This dataset includes breast cancer samples for 683

patients, each of which has 9 characteristics and 1 output

target. The output target is categorized into two classes:

benign cases and malignant cases. Table 1 shows the

details of the characteristics. The respective ratios for the

training and testing processes are 70% and 30%. Using the

K-means algorithm, the training data are divided into

k groups according to the characteristics of each data point.

The k IT2FNN classifier network is then trained using the

corresponding data. The test data are then used to evaluate

the performance of the system. The test data are also

assigned into k groups using the K-means pre-classifier

before feed into the IT2FNN main classifiers. However,

determining a suitable value for k is very important because

this value significantly affects the system performance. In

this study, each experiment is conducted 100 times for each

k = 1, 2, …10.

The experimental results for different values of k are

shown in Table 2, in which it is seen that the proposed

method gives better results for all indices with k = 6. The

accuracy during 2000 iterations of the training process is

shown in Fig. 6 (for k = 6). Table 3 compares the accuracy

of the proposed method with other methods [17, 18, 25–28]

for the Wisconsin breast cancer dataset. It shows that the

proposed algorithm gives the most accurate classification.

Table 2 shows that the k value for the K-means clustering

has a significant effect on the system performance. When

k is large, the training data are divided into a greater

number of groups, so the trained network does not have

Table 1 Wisconsin breast cancer dataset

No Attribute Description Domain

1 Clump thickness Measurement of thickness of clustered mass tissues 1–10

2 Uniformity of cell size Degree of consistent cell size 1–10

3 Uniformity of cell shape Having one form of shape 1–10

4 Marginal adhesion The stable joining of parts to one another, which may occur abnormally 1–10

5 Single epithelial cell size Number of layers present in epithelium 1–10

6 Bare nuclei Having sufficient nucleus 1–10

7 Bland chromatin Unperturbed genetic 1–10

8 Normal nuclei Normal round granular body composed of protein and RNA in the nucleus of a cell 1–10

9 Mitoses The entire process of cell division of the nucleus and the cytoplasm 1–10

Table 2 Experimental results of the K-means IT2FNN classifier for

breast cancer

k Avg. accuracy (%) Avg. sensitivity (%) Avg. specificity (%)

Training Testing Training Testing Training Testing

1 100 96.21 100 96.63 100 95.44

2 100 97.61 100 98.01 100 97.05

3 100 96.72 100 97.36 100 95.79

4 100 96.91 100 97.25 100 96.34

5 100 96.97 100 96.93 100 97.12

6 100 98.07 100 98.13 100 97.98

7 100 97.14 100 97.28 100 96.96

8 100 97.52 100 97.91 100 96.92

9 100 97.36 100 98.83 100 95.14

10 100 97.73 100 98.36 100 96.75

0 500 1000 1500 2000

Trainning Epoch (iterations)

0.4

0.5
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1
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)

Fig. 6 The accuracy during training process of K-means IT2FNN for

the Wisconsin breast cancer dataset (with k = 6)
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sufficient characteristics to recognize the samples in the

test data. Figure 7 shows that if K-means are used to divide

data into greater number of groups, some groups include all

of the disease samples and some groups include all of the

non-disease samples, so it is easy to train the network.

However, when the test data for this group include both

states, the trained network can give a false diagnosis.

Figure 8 shows the change in the accuracy, sensitivity and

specificity of the K-means IT2FNN for the breast cancer

dataset; which corresponds to Table 2; thus, we choose

k = 6 for this dataset.

4.2 The Heart Disease Dataset

The effectiveness of the K-means IT2FNN classifier was

also tested using the UCI Statlog (heart) disease dataset.

This dataset contains 270 sets of samples, each of which

has 13 characteristics and 1 output target. The details of all

characteristics are shown in Table 4. The output has two

statuses, that are represented 0, which corresponds to the

absence of heart disease, and 1, which corresponds to the

presence of heart disease.

First, the dataset is separated into a training set and a test

set in the ratio of 70% to 30%, respectively. The training

data are then divided into k groups, based on the

characteristics of the data point. To determine a suit-

able value for k, the experiment is conducted 100 times

with k = 1, 2, …10. A comparison of the proposed method

using different values of k is shown in Table 5. It is seen

that the proposed method gives the best performance for

k = 4. When the values of k are greater than 5, the training

is 100% accurate. However, the accuracy of the test is

decreased, because when k is larger, the amount of training

data in each classifier network is decreased, so it is easy to

achieve a high training accuracy. However, a small amount

of training data means that the trained classifier network

does not have sufficient characteristics to recognize the

samples for the test data. The accuracy of the training

process during 2500 iterations is shown in Fig. 9 (for

k = 4). Figure 10 shows the change in the accuracy, sen-

sitivity and specificity of the K-means IT2FNN for the

heart disease dataset. Table 6 compares the accuracy of the

proposed method with that for other methods using the UCI

Starlog (heart) disease dataset, which shows the superiority

of the proposed method.

4.3 The Fetal Cardiotocography Dataset

The effectiveness of the K-means IT2FNN classifier is also

tested using the fetal cardiotocography dataset, which is

Table 3 The comparison

results of WBC dataset
Year Author Method Accuracy (%)

2013 Stoean and Stoean [25] SVM and evolutionary algorithm 97.23

2014 Zheng et al. [26] K-means and SVM 97.38

2015 Lim and Chan [27] BK with IVFS 95.26

2016 Guan et al. [17] SVCMAC 96.50

2017 Khan et al. [28] SVM 97.36

2018 Zhou et al. [18] FL-FBELN 96.17

Our method K-means IT2FNN (k = 6) 98.07

Fig. 7 A two-dimensional illustrative example, when training data

are split into more groups

2 4 6 8 10
Values of k in K-means Algorithm

90

92

94
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98

100

R
es
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t i

n 
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g 
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)

ACC
SEN
SPEC

Fig. 8 The testing results of K-means IT2FNN for the Wisconsin

breast cancer dataset
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provided by UCI. This dataset includes 2126 sets of sam-

ples, each of which has 21 characteristics and 1 output

target. The output target has 3 statuses of fetal state, that

are represented 1, which corresponds to the normal case; 2,

represents to the suspect case; and 3, substitutes to the

pathologic case. The details of all characteristics and out-

put targets are shown in Table 7. To evaluate the system

performance for 3-class dataset, the confusion matrix and

the evaluation indices are defined as in Tables 8 and 9. In

which, the normal case, suspect case and pathologic case

are respectively represented by class A, class B, and class

C.

The respective ratios for the training and testing pro-

cesses are 70% and 30%. The training data are then divided

into k groups, based on the characteristics of the data point.

To determine a suitable value for k, the experiment is

Table 4 UCI Starlog (Heart) disease dataset

No Attribute Description Domain

1 Age 29–77

2 Sex Male, female 0, 1

3 Chest pain type Angina, asymptomatic, abnormal 1, 2, 3, 4

4 Resting blood pressure 94–200

5 Serum cholesterol in mg/dl 126–564

6 Fasting blood sugar[ 120 mg/dl 0, 1

7 Resting electrocardiographic results Norm, abnormal, hyper 0, 1, 2

8 Maximum heart rate achieved 71–202

9 Exercise-induced angina 0, 1

10 Old peak = ST depression induced by exercise relative to rest 0–6,2

11 Slope of the peak exercise ST segment Up, flat, down 1, 2, 3

12 Number of major vessels (0–3) colored by fluoroscopy 0, 1, 2, 3

13 Thal Normal, fixed defect, reversible defect 3, 6, 7

Table 5 Experimental results of the K-means IT2FNN classifier for

heart disease

k Avg. accuracy (%) Avg. sensitivity (%) Avg. specificity (%)

Training Testing Training Testing Training Testing

1 85.27 83.92 83.63 89.24 86.57 81.09

2 96.78 88.86 96.45 90.61 97.08 87.71

3 98.91 91.33 98.87 91.16 99.03 91.46

4 99.97 93.81 99.96 94.08 99.93 93.58

5 97.83 92.56 97.61 93.91 98.06 91.64

6 94.16 91.34 95.13 93.74 93.45 89.76

7 100 86.39 100 89.97 100 84.28

8 100 85.24 100 82.87 100 87.04

9 100 86.47 100 87.56 100 85.76

10 100 87.62 100 85.68 100 89.07
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Fig. 9 The accuracy during training process of K-means IT2FNN for

the Starlog heart disease dataset (with k = 4)
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Fig. 10 The testing results of K-means IT2FNN for the Starlog heart

disease dataset
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conducted 100 times with k = 1, 2, …10. The experimental

results for different values of k are shown in Table 10, in

which it is seen that the proposed method gives better

results for accuracy with k = 5. The accuracy of the

training process during 3500 iterations is shown in Fig. 11

(for k = 5). Figure 12 shows the change in the accuracy,

sensitivity and specificity of the K-means IT2FNN for the

fetal cardiotocography dataset; which corresponds to

Table 10. The comparison results of the proposed method

and the other methods using the fetal cardiotocography

dataset are shown in Table 11, which also shows the

superiority of the proposed method.

For all experiments involving breast cancer, heart dis-

ease and fetal cardiotocography, the proposed method

gives results that are superior to other methods. In

Tables 2, 5 and 10, if k = 1, then the K-means algorithm is

not applied. It is seen that when the K-means algorithm is

Table 7 The fetal

cardiotocography dataset
No Attribute Description Domain

1 LB Baseline value (SisPorto) 120–160

2 AC Accelerations (SisPorto) 0–0.02

3 FM Fetal movement (SisPorto) 0–0.481

4 UC Uterine contractions (SisPorto) 0–0.015

5 ASTV Percentage of time with abnormal short-term variability (SisPorto) 0–0.015

6 mSTV Mean value of short-term variability (SisPorto) 0, 0.001

7 ALTV Percentage of time with abnormal long-term variability (SisPorto) 0, 0.001

8 mLTV Mean value of long-term variability (SisPorto) 0–0.005

9 DL Light decelerations 73–87

10 DS Severe decelerations 0.4–7

11 DP Prolonged decelerations 36–91

12 Width Histogram width 42–180

13 Min Low freq. of the histogram 62–159

14 Max High freq. of the histogram 126–238

15 Nmax Number of histogram peaks 2–18

16 Nzeros Number of histogram zeros 0–10

17 Mode Histogram mode 120–187

18 Mean Histogram mean 137–182

19 Median Histogram median 121–186

20 Variance Histogram variance 1–269

21 Tendency Histogram tendency - 1, 0, 1

22 NSP Normal = 1; suspect = 2; pathologic = 3 1–3

Table 6 The comparison result

of heart disease
Year Author Method Accuracy (%)

2013 Buscema et al. [29] TWIST algorithm 84.14

2014 Tomar and Agarwal [30] Feature selection-based LSTSVM 85.59

2015 Lee [31] The center of gravity of BSWFMs using NEWFM 87.40

2016 Dwivedi [19] Logistic regression 85.00

2017 Liu et al. [20] RFRS classification system 92.59

Our method K-mean IT2FNN (k = 4) 93.81

Table 8 Confusion matrix for 3-class dataset

Predicted True status

A B C

A TP_A E_BA E_CA

B E_AB TP_B E_CB

C E_AC E_BC TP_C

where TP_A: the true samples in class A and the outcome of the

prediction is correct; TP_B: the true samples in class B and the

outcome of the prediction is correct; TP_C: the true samples in class

C and the outcome of the prediction is correct; E_AB: the true

samples in class A and the outcome of the prediction is class B;

E_AC: the true samples in class A and the outcome of the prediction

is class C; E_BA: the true samples in class B and the outcome of the

prediction is class A; E_BC: the true samples in class B and the

outcome of the prediction is class C; E_CA: the true samples in class

C and the outcome of the prediction is class A; E_CB: the true

samples in class C and the outcome of the prediction is class B
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used initially, the classification performance is significantly

improved.

5 Conclusion

This study proposes a medical diagnosis system that uses

K-means clustering and an IT2FNN classifier. The main

contribution of this work is the design of a classifier

structure that used K-means clustering as the pre-classifier

and an IT2FNN as the main classifier. This system gives

highly accurate results. The method is shown to be superior

to some state-of-the-art methods. The data used in the

experiment come from the UCI disease dataset. As well as

Fig. 11 The accuracy during training process of K-means IT2FNN

for the fetal cardiotocography dataset (with k = 5)
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Fig. 12 The testing results of K-means IT2FNN for the fetal

cardiotocography dataset

Table 9 Evaluation indices for 3-class dataset

Measure Formula

Sensitivity_A SEN_A = TP_A/(TP_A ? FN_A)

Sensitivity_B SEN_B = TP_B/(TP_B ? FN_B)

Sensitivity_C SEN_C = TP_C/(TP_C ? FN_C)

SPE_A SPE_A = TN_A/(TN_A ? FP_A)

SPE_B SPE_B = TN_B/(TN_B ? FP_B)

SPE_C SPE_C = TN_C/(TN_C ? FP_C)

ACC ACC = (TPA ? TPB ? TPC)/(TPA ? TPB ? TPC ? E_AB ? E_AC ? E_BA ? E_BC ? E_CA ? E_CB)

SEN SEN = (SEN_A ? SEN_B ? SEN_C)/3

SPE SPE = (SPE_A ? SPE_B ? SPE_C)/3

where FN_A = E_AB ? E_AC; FN_B = E_BA ? E_BC; FN_C = E_CA ? E_CB; FP_A = E_BA ? E_CA; FP_B = E_AB ? E_CB;

FP_C = E_AC ? E_BC; TN_A = TP_B ? TP_C ? E_CB ? E_BC; TN_B = E_AB ? E_CB ? TP_C ? E_AC; TN_C = E_AB ? E_BC ?

TP_B ? E_AC

Table 10 Experimental results of the K-means IT2FNN classifier for

fetal cardiotocography

k Avg. accuracy (%) Avg. sensitivity (%) Avg. specificity (%)

Training Testing Training Testing Training Testing

1 90.92 90.91 84.74 84.94 84.74 82.80

2 91.70 91.75 85.99 86.72 83.70 83.75

3 92.13 92.14 86.93 87.37 84.35 84.18

4 92.65 91.10 87.70 86.15 84.96 83.05

5 92.85 92.84 88.56 87.71 85.43 85.26

6 93.26 92.78 89.10 88.02 86.19 85.07

7 92.97 91.85 88.61 85.44 85.39 83.99

8 93.01 92.43 88.84 87.36 85.63 84.86

9 93.29 92.28 89.28 86.97 86.07 84.46

10 93.74 92.17 89.86 87.60 86.64 84.70
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applications for medical diagnosis, the proposed method is

also suitable for many other classification systems because

the computation process is easy and it is easy to implement.
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