19 research outputs found

    Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity

    Get PDF
    Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases

    The Adhesion-GPCR BAI1 Regulates Synaptogenesis by Controlling the Recruitment of the Par3/Tiam1 Polarity Complex to Synaptic Sites

    Get PDF
    Excitatory synapses are polarized structures that primarily reside on dendritic spines in the brain. The small GTPase Rac1 regulates the development and plasticity of synapses and spines by modulating actin dynamics. By restricting the Rac1-guanine nucleotide exchange factor Tiam1 to spines, the polarity protein Par3 promotes synapse development by spatially controlling Rac1 activation. However, the mechanism for recruiting Par3 to spines is unknown. Here, we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a synaptic adhesion GPCR that is required for spinogenesis and synaptogenesis in mice and rats. We show that BAI1 interacts with Par3/Tiam1 and recruits these proteins to synaptic sites. BAI1 knockdown results in Par3/Tiam1 mislocalization and loss of activated Rac1 and filamentous actin from spines. Interestingly, BAI1 also mediates Rac-dependent engulfment in professional phagocytes through its interaction with a different Rac1-guanine nucleotide exchange factor module, ELMO/DOCK180. However, this interaction is dispensable for BAI1’s role in synapse development because a BAI1 mutant that cannot interact with ELMO/DOCK180 rescues spine defects in BAI1-knockdown neurons, whereas a mutant that cannot interact with Par3/Tiam1 rescues neither spine defects nor Par3 localization. Further, overexpression of Tiam1 rescues BAI1 knockdown spine phenotypes. These results indicate that BAI1 plays an important role in synaptogenesis that is mechanistically distinct from its role in phagocytosis. Furthermore, our results provide the first example of a cell surface receptor that targets members of the PAR polarity complex to synapses

    Combinatorial Computational Approaches to Identify Tetracycline Derivatives as Flavivirus Inhibitors

    Get PDF
    Limited structural information of drug targets, cellular toxicity possessed by lead compounds, and large amounts of potential leads are the major issues facing the design-oriented approach of discovering new leads. In an attempt to tackle these issues, we have developed a process of virtual screening based on the observation that conformational rearrangements of the dengue virus envelope protein are essential for the mediation of viral entry into host cells via membrane fusion. Screening was based solely on the structural information of the Dengue virus envelope protein and was focused on a target site that is presumably important for the conformational rearrangements necessary for viral entry. To circumvent the issue of lead compound toxicity, we performed screening based on molecular docking using structural databases of medical compounds. To enhance the identification of hits, we further categorized and selected candidates according to their novel structural characteristics. Finally, the selected candidates were subjected to a biological validation assay to assess inhibition of Dengue virus propagation in mammalian host cells using a plaque formation assay. Among the 10 compounds examined, rolitetracycline and doxycycline significantly inhibited plaque formation, demonstrating their inhibitory effect on dengue virus propagation. Both compounds were tetracycline derivatives with IC(50)s estimated to be 67.1 µM and 55.6 µM, respectively. Their docked conformations displayed common hydrophobic interactions with critical residues that affected membrane fusion during viral entry. These interactions will therefore position the tetracyclic ring moieties of both inhibitors to bind firmly to the target and, subsequently, disrupt conformational rearrangement and block viral entry. This process can be applied to other drug targets in which conformational rearrangement is critical to function

    Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity

    No full text
    Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases

    Comparison of robotic surgery and laparoscopy to perform total hysterectomy with pelvic adhesions or large uterus

    No full text
    Background: Currently, benefits of robotic surgery in patients with benign gynecological conditions remain unclear. In this study, we compared the surgical outcome of robotic and laparoscopic total hysterectomies and evaluated the feasibility of robotic surgery in cases with pelvic adhesions or large uterus. Materials and Methods: A total of 216 patients receiving total hysterectomy via robotic or laparoscopic approach were included in this study. Of all 216 patients, 88 underwent robotic total hysterectomy and 128 underwent laparoscopic total hysterectomy. All cases were grouped by surgical type, adhesion score, and uterine weight to evaluate the interaction or individual effect to the surgical outcomes. The perioperative parameters, including operation time, blood loss, postoperative pain score, time to full diet resumption, length of hospital stay, conversion rate, and surgery-related complications were compared between the groups. Results: Operation time and blood loss were affected by both surgical type and adhesion score. For cases with severe adhesions (adhesion score greater than 4), robotic surgery was associated with a shortened operation time (113.9 ± 38.4 min versus 164.3 ± 81.4 min, P = 0.007) and reduced blood loss (187.5 ± 148.7 mL versus 385.7 ± 482.6, P=0.044) compared with laparoscopy. Moreover, robotic group showed a lower postoperative pain score than laparoscopic group, as the effect was found to be independent of adhesion score or uterine weight. The grade-II complication rate was also found to be lower in the robotic group. Conclusions: Comparing to laparoscopic approach, robotic surgery is a feasible and potential alternative for performing total hysterectomy with severe adhesions

    Significance of the Modified NUTRIC Score for Predicting Clinical Outcomes in Patients with Severe Community-Acquired Pneumonia

    No full text
    Nutritional status could affect clinical outcomes in critical patients. We aimed to determine the prognostic accuracy of the modified Nutrition Risk in Critically Ill (mNUTRIC) score for hospital mortality and treatment outcomes in patients with severe community-acquired pneumonia (SCAP) compared to other clinical prediction rules. We enrolled SCAP patients in a multi-center setting retrospectively. The mNUTRIC score and clinical prediction rules for pneumonia, as well as clinical factors, were calculated and recorded. Clinical outcomes, including mortality status and treatment outcome, were assessed after the patient was discharged. We used the receiver operating characteristic (ROC) curve method and multivariate logistic regression analysis to determine the prognostic accuracy of the mNUTRIC score for predicting clinical outcomes compared to clinical prediction rules, while 815 SCAP patients were enrolled. ROC curve analysis showed that the mNUTRIC score was the most effective at predicting each clinical outcome and had the highest area under the ROC curve value. The cut-off value for predicting clinical outcomes was 5.5. By multivariate logistic regression analysis, the mNUTRIC score was also an independent predictor of both clinical outcomes in SCAP patients. We concluded that the mNUTRIC score is a better prognostic factor for predicting clinical outcomes in SCAP patients compared to other clinical prediction rules

    Radiomic features analysis in computed tomography images of lung nodule classification

    No full text
    <div><p>Purpose</p><p>Radiomics, which extract large amount of quantification image features from diagnostic medical images had been widely used for prognostication, treatment response prediction and cancer detection. The treatment options for lung nodules depend on their diagnosis, benign or malignant. Conventionally, lung nodule diagnosis is based on invasive biopsy. Recently, radiomics features, a non-invasive method based on clinical images, have shown high potential in lesion classification, treatment outcome prediction.</p><p>Methods</p><p>Lung nodule classification using radiomics based on Computed Tomography (CT) image data was investigated and a 4-feature signature was introduced for lung nodule classification. Retrospectively, 72 patients with 75 pulmonary nodules were collected. Radiomics feature extraction was performed on non-enhanced CT images with contours which were delineated by an experienced radiation oncologist.</p><p>Result</p><p>Among the 750 image features in each case, 76 features were found to have significant differences between benign and malignant lesions. A radiomics signature was composed of the best 4 features which included Laws_LSL_min, Laws_SLL_energy, Laws_SSL_skewness and Laws_EEL_uniformity. The accuracy using the signature in benign or malignant classification was 84% with the sensitivity of 92.85% and the specificity of 72.73%.</p><p>Conclusion</p><p>The classification signature based on radiomics features demonstrated very good accuracy and high potential in clinical application.</p></div
    corecore