36 research outputs found

    The Pediatric and Young Adult Choroidal and Ciliary Body Melanoma Genetic Study, A Survey by the European Ophthalmic Oncology Group

    Get PDF
    PURPOSE:To explore the genetic background of choroidal and ciliary body melanoma among children and young adults, with special focus on BAP1 germline variants in this age group. METHODS:Patients under the age of 25 and with confirmed choroidal or ciliary body melanoma were included in this retrospective, multicenter observational study. Nuclear BAP1 immunopositivity was used to evaluate the presence of functional BAP1 in the tumor. Next-generation sequencing using Ion Torrent platform was used to determine pathogenic variants of BAP1, EIF1AX, SF3B1, GNAQ and GNA11 and chromosome 3 status in the tumor or in DNA extracted from blood or saliva. Survival was analyzed using Kaplan-Meier estimates. RESULTS:The mean age at diagnosis was 17 years (range 5.0–24.8). A germline BAP1 pathogenic variant was identified in an 18-year-old patient, and a somatic variant, based mainly on immunohistochemistry, in 13 (42%) of 31 available specimens. One tumor had a somatic SF3B1 pathogenic variant. Disomy 3 and the absence of a BAP1 pathogenic variant in the tumor predicted the longest metastasis-free survival. Males showed longer metastasis-free survival than females (P = 0.018). CONCLUSIONS:We did not find a stronger-than-average BAP1 germline predisposition for choroidal and ciliary body melanoma among children and young adults compared to adults. Males had a more favorable survival and disomy 3, and the absence of a BAP1 mutation in the tumor tissue predicted the most favorable metastasis-free survival. A BAP1 germline pathogenic variant was identified in one patient (1%), and a somatic variant based mainly on immunohistochemistry in 13 (42%).</p

    The Pediatric and Young Adult Choroidal and Ciliary Body Melanoma Genetic Study, A Survey by the European Ophthalmic Oncology Group

    Get PDF
    PURPOSE:To explore the genetic background of choroidal and ciliary body melanoma among children and young adults, with special focus on BAP1 germline variants in this age group. METHODS:Patients under the age of 25 and with confirmed choroidal or ciliary body melanoma were included in this retrospective, multicenter observational study. Nuclear BAP1 immunopositivity was used to evaluate the presence of functional BAP1 in the tumor. Next-generation sequencing using Ion Torrent platform was used to determine pathogenic variants of BAP1, EIF1AX, SF3B1, GNAQ and GNA11 and chromosome 3 status in the tumor or in DNA extracted from blood or saliva. Survival was analyzed using Kaplan-Meier estimates. RESULTS:The mean age at diagnosis was 17 years (range 5.0–24.8). A germline BAP1 pathogenic variant was identified in an 18-year-old patient, and a somatic variant, based mainly on immunohistochemistry, in 13 (42%) of 31 available specimens. One tumor had a somatic SF3B1 pathogenic variant. Disomy 3 and the absence of a BAP1 pathogenic variant in the tumor predicted the longest metastasis-free survival. Males showed longer metastasis-free survival than females (P = 0.018). CONCLUSIONS:We did not find a stronger-than-average BAP1 germline predisposition for choroidal and ciliary body melanoma among children and young adults compared to adults. Males had a more favorable survival and disomy 3, and the absence of a BAP1 mutation in the tumor tissue predicted the most favorable metastasis-free survival. A BAP1 germline pathogenic variant was identified in one patient (1%), and a somatic variant based mainly on immunohistochemistry in 13 (42%).</p

    Magnetic Field Properties inside the Jet of Mrk 421: Multiwavelength Polarimetry Including the Imaging X-ray Polarimetry Explorer

    Full text link
    We conducted a polarimetry campaign from radio to X-ray wavelengths of the high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry Explorer (IXPE) measurements on 2022 December 6-8. We detected X-ray polarization of Mrk 421 with a degree of ΠX\Pi_{\rm X}=14±\pm1%\% and an electric-vector position angle ψX\psi_{\rm X}=107±\pm3^{\circ} in the 2-8 keV band. From the time variability analysis, we find a significant episodic variation in ψX\psi_{\rm X}. During 7 months from the first IXPE pointing of Mrk 421 in 2022 May, ψX\psi_{\rm X} varied across the range of 0^{\circ} to 180^{\circ}, while ΠX\Pi_{\rm X} maintained similar values within \sim10-15%\%. Furthermore, a swing in ψX\psi_{\rm X} in 2022 June was accompanied by simultaneous spectral variations. The results of the multiwavelength polarimetry show that the X-ray polarization degree was generally \sim2-3 times greater than that at longer wavelengths, while the polarization angle fluctuated. Additionally, based on radio, infrared, and optical polarimetry, we find that rotation of ψ\psi occurred in the opposite direction with respect to the rotation of ψX\psi_{\rm X} over longer timescales at similar epochs. The polarization behavior observed across multiple wavelengths is consistent with previous IXPE findings for HSP blazars. This result favors the energy-stratified shock model developed to explain variable emission in relativistic jets. The accompanying spectral variation during the ψX\psi_{\rm X} rotation can be explained by a fluctuation in the physical conditions, e.g., in the energy distribution of relativistic electrons. The opposite rotation direction of ψ\psi between the X-ray and longer-wavelength polarization accentuates the conclusion that the X-ray emitting region is spatially separated from that at longer wavelengths.Comment: 17 pages, 13 figures, 4 tables; Accepted for publication in A&

    Role of Tula-Family Proteins in Cell Signaling and Activation: Advances and Challenges

    No full text
    This Special Issue entitled “Role of Tula-Family Proteins in Cell Signaling and Activation: Advances and Challenges” is focused on a relatively novel vertebrate gene/protein family termed alternatively TULA, UBASH3, or STS [...

    TULA-Family Regulators of Platelet Activation

    No full text
    The two members of the UBASH3/TULA/STS-protein family have been shown to critically regulate cellular processes in multiple biological systems. The regulatory function of TULA-2 (also known as UBASH3B or STS-1) in platelets is one of the best examples of the involvement of UBASH3/TULA/STS proteins in cellular regulation. TULA-2 negatively regulates platelet signaling mediated by ITAM- and hemITAM-containing membrane receptors that are dependent on the protein tyrosine kinase Syk, which currently represents the best-known dephosphorylation target of TULA-2. The biological responses of platelets to collagen and other physiological agonists are significantly downregulated as a result. The protein structure, enzymatic activity and regulatory functions of UBASH3/TULA/STS proteins in the context of platelet responses and their regulation are discussed in this review

    Biochemical characterization of spleen tyrosine kinase (SYK) isoforms in platelets

    No full text
    Alternate splicing is among the regulatory mechanisms imparting functional diversity in proteins. Studying protein isoforms generated through alternative splicing is therefore critical for understanding protein functions in many biological systems. Spleen tyrosine kinase (Syk) plays an essential role in ITAM/hemITAM signaling in many cell types, including platelets. However, the spectrum of Syk isoforms expressed in platelets has not been characterized. Syk has been shown to have a full-length long isoform SykL and a shorter SykS lacking 23 amino acid residues within its interdomain B. Furthermore, putative isoforms lacking another 23 amino acid-long sequence or a combination of the two deletions have been postulated to exist. In this report, we demonstrate that mouse platelets express full-length SykL and the previously described shorter isoform SykS, but lack other shorter isoforms, whereas human platelets express predominantly SykL. These results both indicate a possible role of alternative Syk splicing in the regulation of receptor signaling in mouse platelets and a difference between signaling regulation in mouse and human platelets

    Soft excess in the quiescent Be/X-ray pulsar RX J0812.4-3114

    No full text
    We report a 72 ks XMM-Newton observation of the Be/X-ray pulsar (BeXRP) RX J0812.4-3114 in quiescence (Lx=1.6x10^33 erg/s). Intriguingly, we find a two-component spectrum, with a hard power-law (Gamma=1.5) and a soft blackbody-like excess below =1 keV. The blackbody component is consistent in kT with a prior quiescent Chandra observation reported by Tsygankov et al. and has an inferred blackbody radius of =10 km, consistent with emission from the entire neutron star (NS) surface. There is also mild evidence for an absorption line at =1 keV and/or =1.4 keV. The hard component shows pulsations at P=31.908 s (pulsed fraction 0.84+/-0.10), agreeing with the pulse period seen previously in outbursts, but no pulsations were found in the soft excess (pulsed fraction &lt;~ 31%). We conclude that the pulsed hard component suggests low-level accretion onto the neutron star poles, while the soft excess seems to originate from the entire NS surface. We speculate that, in quiescence, the source switches between a soft thermal-dominated state (when the propeller effect is at work) and a relatively hard state with low-level accretion, and use the propeller cutoff to estimate the magnetic field of the system to be &lt;~8.4x10^11 G. We compare the quiescent thermal Lx predicted by the standard deep crustal heating model to our observations and find that RX J0812.4-3114 has a high thermal Lx, at or above the prediction for minimum cooling mechanisms. This suggests that RX J0812.4-3114 either contains a relatively low-mass NS with minimum cooling, or that the system may be young enough that the NS has not fully cooled from the supernova explosion

    Direct Inhibition of CDK9 blocks HIV-1 Replication Without Preventing T Cell Activation in Primary Human Peripheral Blood Lymphocytes

    Get PDF
    HIV-1 transcription is essential for the virus replication cycle. HIV-1 Tat is a viral transactivator that strongly stimulates the processivity of RNA polymerase II (RNAPII) via recruitment of the cyclin T1/CDK9 positive transcription elongation factor, which phosphorylates the C-terminal domain (CTD) of RNAPII. Consistently, HIV-1 replication in transformed cells is very sensitive to direct CDK9 inhibition. Thus, CDK9 could be a potential target for anti-HIV-1 therapy. A clearer understanding of the requirements for CDK9 activity in primary human T cells is needed to assess whether the CDK9-dependent step in HIV-1 transcription can be targeted clinically. We have investigated the effects of limiting CDK9 activity with recombinant lentiviruses expressing a dominant-negative form of CDK9 (HA-dnCDK9) in peripheral blood lymphocytes (PBLs) and other cells. Our results show that direct inhibition of CDK9 potently inhibits HIV-1 replication in single-round infection assays with little to undetectable effects on RNAPII transcription, RNA synthesis, proliferation and viability. In PBLs purified from multiple donors, direct inhibition of CDK9 activity blocks HIV-1 replication/transcription but does not prevent T-cell activation, as determined via measurement of cell surface and cell cycle entry and progression markers, and DNA synthesis. We have also compared the effects of HA-dnCDK9 to flavopiridol (FVP), a general CDK inhibitor that potently inhibits CDK9. In contrast to HA-dnCDK9, FVP interferes with key cellular processes at concentrations that inhibit HIV-1 replication with potency similar to HA-dnCDK9. In particular, FVP inhibits several T-cell activation markers and DNA synthesis in primary PBLs at the minimal concentrations required to inhibit HIV-1 replication. Our results imply that small pharmacological compounds targeting CDK9 with enhanced selectivity could be developed into effective anti-HIV-1 therapeutic drugs

    Rapid ubiquitination of Syk following GPVI activation in platelets

    No full text
    Spleen tyrosine kinase (Syk) activation is a key intermediate step in the activation of platelets by the physiologic agonist collagen. We have found that Syk is rapidly ubiquitinated upon activation of platelets by collagen, collagen-related peptide (CRP), and convulxin. The Src family kinase inhibitors prevented Syk phosphorylation and its ubiquitination, indicating that the process is downstream of Src kinases. The ubiquitination of Syk did not cause degradation of the protein as evidenced by the lack of effect of proteasomal and lysosomal inhibitors. We separated ubiquitinated Syk from its nonubiquitinated counterpart and used an in vitro kinase assay to compare their activities. We found that the ubiquitinated Syk appeared to be about 5-fold more active. Using a phosphospecific antibody to Syk (Tyr525/Tyr526) that measures activated Syk, we found that most (60%-75%) of the active Syk is in the ubiquitinated fraction. This result explains the apparent high specific activity of ubiquitinated Syk. In c-Cbl–deficient mice, Syk is not ubiquitinated, implicating c-Cbl as the E3 ligase involved in Syk ubiquitination. Furthermore, Syk is not dephosphorylated in these mice. We propose that c-Cbl plays a regulatory role in glycoprotein VI (GPVI)/Fc receptor γ (FcRγ)-chain–dependent platelet activation through its interaction with Syk
    corecore