1,213 research outputs found

    Phase transitions to spin-triplet ferromagnetic superconductivity in neutron stars

    Full text link
    Effects of the anisotropy of Cooper pairs in spin-triplet ferromagnetic superconductors are investigated on the basis of the Ginzburg-Landau theory. A special attention is paid to the triggering of the superconducting state by the ferromagnetic order. The ground states of these superconductors are outlined and discussed. The idea about a possible coexistence of ferromagnetism and spin-triplet superconductivity in neutron stars is introduced.Comment: 10 pages Latex2e, 2 figs, Proc. of the Leiden Workshop on Realistic Models in Astrophysical Matter (AIP, N.Y., 2004

    Serotonin Modulates Oscillations of the Membrane Potential in Isolated Spinal Neurons from Lampreys

    Get PDF
    Studies were performed on spinal neurons from lampreys isolated by an enzymatic/mechanical method using pronase. The effects of 100 µM serotonin (5-HT) on membrane potential oscillations induced by a variety of excitatory amino acids were studied. 5-HT was found to depolarize branched cells (presumptive motoneurons and interneurons) by 2–6 mV without inducing membrane potential oscillations. However, when oscillations were already present because of an excitatory amino acid, 5-HT changed the parameters of these oscillations, increasing the amplitudes of all types of oscillations, increasing the frequency of irregular oscillations, and increasing the duration of the depolarization plateaus accompanied by action potentials. Serotonin modulation of the effects of excitatory amino acids and the electrical activity of cells in the neural locomotor network facilitates motor activity and leads to increases in the contraction of truncal muscles and more intense movements by the animal. The possible mechanisms of receptor coactivation are discussed, along with increases in action potential frequency and changes in the parameters of the locomotor rhythm

    The Effects of Serotonin on Functionally Diverse Isolated Lamprey Spinal Cord Neurons

    Get PDF
    The experiments reported here showed that application of serotonin (5-hydroxytryptamine, 5-HT) (100 µ M) did not induce any significant current through the membranes of any of the spinal neurons studied (n = 62). At the same time, the membranes of most motoneurons and interneurons (15 of 18) underwent slight depolarization (2–6 mV) in the presence of 5-HT, which was not accompanied by any change in the input resistance of the cells. Depolarization to 10–20 mV occurred in some cells (3 of 18) of these functional groups, this being accompanied by 20–60% decreases in input resistance. The same concentration of 5-HT induced transient low-amplitude depolarization of most sensory spinal neurons (dorsal sensory cells), this changing smoothly to long-term hyperpolarization by 2–7 mV. The input resistance of the cell membranes in these cases showed no significant change (n = 8). Data were obtained which provided a better understanding of the mechanism by which 5-HT modulates the activity of spinal neurons. Thus, 5-HT facilitates chemoreceptive currents induced by application of NMDA to motoneurons and interneurons, while the NMDA responses of dorsal sensory cells were decreased by 5-HT. 5-HT affected the post-spike afterresponses of neurons. 5-HT significantly decreased the amplitude of afterhyperpolarization arising at the end of the descending phase of action potentials in motoneurons and interneurons and increased the amplitude of afterdepolarization in these types of cells. In sensory spinal neurons, 5-HT had no great effect on post-spike afterresponses. The results obtained here support the suggestion that 5-HT significantly modulates the activity of spinal neurons of different functional types. 5-HT facilitates excitation induced by subthreshold depolarization in motoneurons and some interneurons, facilitating the generation of rhythmic discharges by decreasing afterhyperpolarization. In sensory cells, 5-HT enhances inhibition due to hyperpolarization, suppressing NMDA currents. The differences in the effects of 5-HT on functionally diverse neurons are presumed to be associated with the combination of different types of 5-HT receptors on the membranes of these types of spinal neurons

    Analysis of stochastic phenomena in Ricker-type population model with delay

    Full text link
    A phenomenon of the noiseinduced extinction is studied on the base of the conceptual Rickertype model with the delay and Allee effect. This nonlinear discrete population model exhibits the persistence with the different form of attractors, both regular and chaotic. For this model, the persistence zones are defined by points of the crisis bifurcations. The phenomenon of the noiseinduced extinction is investigated with the help of direct numerical simulations and by the semianalytical new method based on the stochastic sensitivity functions. In the stochastic analysis, a geometrical approach taking into account a mutual arrangement of the confidence domains and basins of attraction is used. © 2017 Author(s).The work was supported by Russian Science Foundation (grant No 16-11-10098)

    About the magnetic fluctuation effect on the phase transition to superconducting state in Al

    Full text link
    The free energy and the order parameter profile near the phase transition to the superconducting state in bulk Al samples are calculated within a mean-field-like approximation. The results are compared with those for thin films.Comment: 11 pages, miktex, 2 figure
    corecore