494 research outputs found

    Exclusive ϕ\phi production in proton-proton collisions in the resonance model

    Full text link
    The exclusive ϕ\phi meson production in proton-proton reactions is calculated within the resonance model. The considered model was already successfully applied to the description of π\pi, η\eta, ρ\rho, ω\omega, ππ\pi\pi production in proton-proton collisions. The only new parameter entering into the model is the ωϕ\omega-\phi mixing angle θmix\theta_{mix} which is taken equal to θmix3.7o\theta_{mix} \approx 3.7^o.Comment: 7 pages, 1 figure, to appear in the brief report section of PR

    A relativistic quark model for the Omega- electromagnetic form factors

    Full text link
    We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.Comment: 13 pages, 5 figure

    Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers

    Get PDF
    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied

    Deep inelastic scattering on asymmetric nuclei

    Get PDF
    We study deep inelastic scattering on isospin asymmetric nuclei. In particular, the difference of the nuclear structure functions and the Gottfried sum rule for the lightest mirror nuclei, 3He and 3H, are investigated. It is found that such systems can provide significant information on charge symmetry breaking and flavor asymmetry in the nuclear medium. Furthermore, we propose a new method to extract the neutron structure function from radioactive isotopes far from the line of stability. We also discuss the flavor asymmetry in the Drell-Yan process with isospin asymmetric nuclei

    The role of N(1535)N^*(1535) in ppppϕpp \to pp \phi and πpnϕ\pi^- p \to n \phi reactions

    Full text link
    The near threshold ϕ\phi meson production in proton-proton and πp\pi^- p collisions is studied with the assumption that the production mechanism is due to the sub-NϕN\phi-threshold N(1535)N^*(1535) resonance. The π0\pi^0, η\eta and ρ0\rho^0-meson exchanges for proton-proton collisions are considered. It is shown that the contribution to the ppppϕpp \to pp \phi reaction from the t-channel π0\pi^0 meson exchange is dominant. With a significant N(1535)NϕN^*(1535)N\phi coupling (gN(1535)Nϕ2/4πg^2_{N^*(1535)N \phi}/4 \pi = 0.13), both ppppϕpp \to pp \phi and πpnϕ\pi^- p \to n \phi data are very well reproduced. The significant coupling of the N(1535)N^*(1535) resonance to NϕN \phi is compatible with previous indications of a large ssˉs \bar{s} component in the quark wave function of the N(1535)N^*(1535) resonance and may be the real origin of the significant enhancement of the ϕ\phi production over the naive OZI-rule predictions.Comment: 15 pages, 6 figure

    The effect of different baryons impurities

    Full text link
    We demonstrate the different effect of different baryons impurities on the static properties of nuclei within the framework of the relativistic mean-field model. Systematic calculations show that Λc+\Lambda_c^+ and Λb\Lambda_b has the same attracting role as Λ\Lambda hyperon does in lighter hypernuclei. Ξ\Xi^- and Ξc0\Xi_c^0 hyperon has the attracting role only for the protons distribution, and has a repulsive role for the neutrons distribution. On the contrary, Ξ0\Xi^0 and Ξc+\Xi^+_c hyperon attracts surrounding neutrons and reveals a repulsive force to the protons. We find that the different effect of different baryons impurities on the nuclear core is due to the different third component of their isospin.Comment: 9 page

    Does the effective Lagrangian for low-energy QCD scale?

    Full text link
    QCD is not an approximately scale invariant theory. Hence a dilaton field is not expected to provide a good description of the low-energy dynamics associated with the gluon condensate. Even if such a field is introduced, it remains almost unchanged in hadronic matter at normal densities. This is because the large glueball mass together with the size of the phenomenological gluon condensate ensure that changes to that condensate are very small at such densities. Any changes in hadronic masses and decay constants in matter generated by that condensate will be much smaller that those produced directly by changes in the quark condensate. Hence masses and decay constants are not expected to display a universal scaling.Comment: 7 pages (RevTeX), MC/TH 94/0

    K^+ production in baryon-baryon and heavy-ion collisions

    Get PDF
    Kaon production cross sections in nucleon-nucleon, nucleon-delta and delta-delta interactions are studied in a boson exchange model. For the latter two interactions, the exchanged pion can be on-mass shell, only contributions due to a virtual pion are included via the Peierls method by taking into account the finite delta width. With these cross sections and also those for pion-baryon interactions, subthreshold kaon production from heavy ion collisions is studied in the relativistic transport model.Comment: to appear in Phys. Rev.

    Variations of nuclear binding with quark masses

    Get PDF
    We investigate the variation with light quark mass of the mass of the nucleon as well as the masses of the mesons commonly used in a one-boson-exchange model of the nucleon-nucleon force. Care is taken to evaluate the meson mass shifts at the kinematic point relevant to that problem. Using these results, we evaluate the corresponding changes in the energy of the 1S0 antibound state and the binding energies of the deuteron, triton, and selected finite nuclei by using a one-boson exchange model. The results are discussed in the context of possible corrections to the standard scenario for Big Bang nucleosynthesis in the case where, as suggested by recent observations of quasar absorption spectra, the quark masses may have changed over the age of the Universe.M.E. Carrillo-Serrano, I.C. Cloët, K. Tsushima, A.W.Thomas and I.R. Afna
    corecore