53 research outputs found

    Human Mena Associates with Rac1 Small GTPase in Glioblastoma Cell Lines

    Get PDF
    Mammarian enabled (Mena), a member of the Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) family of proteins, has been implicated in cell motility through regulation of the actin cytoskeleton assembly, including lamellipodial protrusion. Rac1, a member of the Rho family GTPases, also plays a pivotal role in the formation of lamellipodia. Here we report that human Mena (hMena) colocalizes with Rac1 in lamellipodia, and using an unmixing assisted acceptor depletion fluorescence resonance energy transfer (u-adFRET) analysis that hMena associates with Rac1 in vivo in the glioblastoma cell line U251MG. Depletion of hMena by siRNA causes cells to be highly spread with the formation of lamellipodia. This cellular phenotype is canceled by introduction of a dominant negative form of Rac1. A Rac activity assay and FRET analysis showed that hMena knock-down cells increased the activation of Rac1 at the lamellipodia. These results suggest that hMena possesses properties which help to regulate the formation of lamellipodia through the modulation of the activity of Rac1

    PeptX: Using Genetic Algorithms to optimize peptides for MHC binding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding between the major histocompatibility complex and the presented peptide is an indispensable prerequisite for the adaptive immune response. There is a plethora of different <it>in silico </it>techniques for the prediction of the peptide binding affinity to major histocompatibility complexes. Most studies screen a set of peptides for promising candidates to predict possible T cell epitopes. In this study we ask the question vice versa: Which peptides do have highest binding affinities to a given major histocompatibility complex according to certain <it>in silico </it>scoring functions?</p> <p>Results</p> <p>Since a full screening of all possible peptides is not feasible in reasonable runtime, we introduce a heuristic approach. We developed a framework for Genetic Algorithms to optimize peptides for the binding to major histocompatibility complexes. In an extensive benchmark we tested various operator combinations. We found that (1) selection operators have a strong influence on the convergence of the population while recombination operators have minor influence and (2) that five different binding prediction methods lead to five different sets of "optimal" peptides for the same major histocompatibility complex. The consensus peptides were experimentally verified as high affinity binders.</p> <p>Conclusion</p> <p>We provide a generalized framework to calculate sets of high affinity binders based on different previously published scoring functions in reasonable runtime. Furthermore we give insight into the different behaviours of operators and scoring functions of the Genetic Algorithm.</p

    Effect of the higher-order structure of tRNAs on the stability of hybrids with oligodeoxyribonucleotides: separation of tRNA by an efficient solution hybridization.

    No full text
    In the course of developing a method to purify a single tRNA species efficiently, we have examined hybridization efficiencies between some tRNAs and short oligodeoxyribonucleotide probes both by the filter and solution hybridization methods without denaturants. The hybridization efficiencies varied considerably among probes which are complementary to different regions of the tRNAs, although there was little efficiency variation in the probes toward DNA substrates including the same nucleotide sequence. This efficiency variation was shown to be due to tRNA-specific higher-order structures as well as a hypermodified nucleotide in the anticodon loop. Characterization of the tRNA-probe hybrids by both nondenaturing gel electrophoresis and chemical modification showed the existence of two stable hybridizing states as a function of ionic strength. Our results indicate that RNA molecules with a number of intramolecular base pairings are able to form stable hybrids with complementary sequences under nondenaturing conditions. On the basis of these data, an appropriate probe was designed to successfully purify yeast tRNA(Phe) by making a tRNA(Phe)-probe hybrid, which has a longer retention time in hydroxyapatite high performance liquid chromatography than the tRNA(Phe) itself

    Reproductive interference in live-bearing fish: the male guppy is a potential biological agent for eradicating invasive mosquitofish

    Get PDF
    The eradication of invasive exotic species is desirable but often infeasible. Here, we show that male guppies are a potential biological agent for eradicating invasive mosquitofish through the mechanism of reproductive interference, which is defined as any sexual behavior erratically directed at a different species that damages female and/or male fitness. Together with decades of data on species distribution, our field surveys suggest that mosquitofish initially became established on Okinawa Island before being replaced by the more recently introduced guppies. More importantly, our laboratory experiments suggest that reproductive interference was one of the mechanisms underlying this species exclusion, and that in this case, the negative effects were asymmetric, i.e., they only impacted mosquitofish. Reproductive interference may offer a safer and more convenient method of biological control than the traditional sterile male release method because radiation is not necessary

    On Modulated Waves in a Disordered Anharmonic Chain

    No full text
    corecore