30 research outputs found

    Collapse of Primordial Filamentary Clouds under Far-Ultraviolet Radiation

    Full text link
    Collapse and fragmentation of primordial filamentary clouds under isotropic dissociation radiation is investigated with one-dimensional hydrodynamical calculations. We investigate the effect of dissociation photon on the filamentary clouds with calculating non-equilibrium chemical reactions. With the external radiation assumed to turn on when the filamentary cloud forms, the filamentary cloud with low initial density (n0102cm3n_0 \le 10^2 \mathrm{cm^{-3}}) suffers photodissociation of hydrogen molecules. In such a case, since main coolant is lost, temperature increases adiabatically enough to suppress collapse. As a result, the filamentary cloud fragments into very massive clouds (105M\sim 10^5 M_\odot). On the other hand, the evolution of the filamentary clouds with high initial density (n0>102cm3n_0>10^2 \mathrm{cm^{-3}}) is hardly affected by the external radiation. This is because the filamentary cloud with high initial density shields itself from the external radiation. It is found that the external radiation increases fragment mass. This result is consistent with previous results with one-zone models. It is also found that fragment mass decreases owing to the external dissociation radiation in the case with sufficiently large line mass.Comment: 26 pages, 15 figures, accepted by PAS

    Dust-cooling--induced Fragmentation of Low-metallicity Clouds

    Full text link
    Dynamical collapse and fragmentation of low-metallicity cloud cores is studied using three-dimensional hydrodynamical calculations, with particular attention devoted whether the cores fragment in the dust-cooling phase or not. The cores become elongated in this phase, being unstable to non-spherical perturbation due to the sudden temperature decrease. In the metallicity range of 10^{-6}-10^{-5}Z_sun, cores with an initial axis ratio >2 reach a critical value of the axis ratio (>30) and fragment into multiple small clumps. This provides a possible mechanism to produce low-mass stars in ultra-metal-poor environments.Comment: 4 pages, 3 figures, ApJ Letters in pres

    Thermal and Fragmentation Properties of Star-forming Clouds in Low-metallicity Environments

    Full text link
    The thermal and chemical evolution of star-forming clouds is studied for different gas metallicities, Z, using the model of Omukai (2000), updated to include deuterium chemistry and the effects of cosmic microwave background (CMB) radiation. HD-line cooling dominates the thermal balance of clouds when Z \~ 10^{-5}-10^{-3} Z_sun and density ~10^{5} cm^{-3}. Early on, CMB radiation prevents the gas temperature to fall below T_CMB, although this hardly alters the cloud thermal evolution in low-metallicity gas. From the derived temperature evolution, we assess cloud/core fragmentation as a function of metallicity from linear perturbation theory, which requires that the core elongation E := (b-a)/a > E_NL ~ 1, where a (b) is the short (long) core axis length. The fragment mass is given by the thermal Jeans mass at E = E_NL. Given these assumptions and the initial (gaussian) distribution of E we compute the fragment mass distribution as a function of metallicity. We find that: (i) For Z=0, all fragments are very massive, > 10^{3}M_sun, consistently with previous studies; (ii) for Z>10^{-6} Z_sun a few clumps go through an additional high density (> 10^{10} cm^{-3}) fragmentation phase driven by dust-cooling, leading to low-mass fragments; (iii) The mass fraction in low-mass fragments is initially very small, but at Z ~ 10^{-5}Z_sun it becomes dominant and continues to grow as Z is increased; (iv) as a result of the two fragmentation modes, a bimodal mass distribution emerges in 0.01 0.1Z_sun, the two peaks merge into a singly-peaked mass function which might be regarded as the precursor of the ordinary Salpeter-like IMF.Comment: 38 pages, 16 figures, ApJ in pres

    Critical phenomena in Newtonian gravity

    Get PDF
    We investigate the stability of self-similar solutions for a gravitationally collapsing isothermal sphere in Newtonian gravity by means of a normal mode analysis. It is found that the Hunter series of solutions are highly unstable, while neither the Larson-Penston solution nor the homogeneous collapse one have an analytic unstable mode. Since the homogeneous collapse solution is known to suffer the kink instability, the present result and recent numerical simulations strongly support a proposition that the Larson-Penston solution will be realized in astrophysical situations. It is also found that the Hunter (A) solution has a single unstable mode, which implies that it is a critical solution associated with some critical phenomena which are analogous to those in general relativity. The critical exponent γ\gamma is calculated as γ0.10567\gamma\simeq 0.10567. In contrast to the general relativistic case, the order parameter will be the collapsed mass. In order to obtain a complete picture of the Newtonian critical phenomena, full numerical simulations will be needed.Comment: 25 pages, 7 figures, accepted for publication in Physical Review

    No Go Theorem for Kinematic Self-Similarity with A Polytropic Equation of State

    Get PDF
    We have investigated spherically symmetric spacetimes which contain a perfect fluid obeying the polytropic equation of state and admit a kinematic self-similar vector of the second kind which is neither parallel nor orthogonal to the fluid flow. We have assumed two kinds of polytropic equations of state and shown in general relativity that such spacetimes must be vacuum.Comment: 5 pages, no figures. Revtex. One word added to the title. Final version to appear in Physical Review D as a Brief Repor

    Criticality and convergence in Newtonian collapse

    Get PDF
    We study through numerical simulation the spherical collapse of isothermal gas in Newtonian gravity. We observe a critical behavior which occurs at the threshold of gravitational instability leading to core formation. For a given initial density profile, we find a critical temperature, which is of the same order as the virial temperature of the initial configuration. For the exact critical temperature, the collapse converges to a self-similar form, the first member in Hunter's family of self-similar solutions. For a temperature close to the critical value, the collapse first approaches this critical solution. Later on, in the supercritical case, the collapse converges to another self-similar solution, which is called the Larson-Penston solution. In the subcritical case, the gas bounces and disperses to infinity. We find two scaling laws: one for the collapsed mass in the supercritical case and the other for the maximum density reached before dispersal in the subcritical case. The value of the critical exponent is measured to be 0.11\simeq 0.11 in the supercritical case, which agrees well with the predicted value 0.10567\simeq 0.10567. These critical properties are quite similar to those observed in the collapse of a radiation fluid in general relativity. We study the response of the system to temperature fluctuation and discuss astrophysical implications for the insterstellar medium structure and for the star formation process. Newtonian critical behavior is important not only because it provides a simple model for general relativity but also because it is relevant for astrophysical systems such as molecular clouds.Comment: 15 pages, 8 figures, accepted for publication in PRD, figures 1 and 3 at lower resolution than in journal version, typos correcte

    Convergence to a self-similar solution in general relativistic gravitational collapse

    Get PDF
    We study the spherical collapse of a perfect fluid with an equation of state P=kρP=k\rho by full general relativistic numerical simulations. For 0, it has been known that there exists a general relativistic counterpart of the Larson-Penston self-similar Newtonian solution. The numerical simulations strongly suggest that, in the neighborhood of the center, generic collapse converges to this solution in an approach to a singularity and that self-similar solutions other than this solution, including a ``critical solution'' in the black hole critical behavior, are relevant only when the parameters which parametrize initial data are fine-tuned. This result is supported by a mode analysis on the pertinent self-similar solutions. Since a naked singularity forms in the general relativistic Larson-Penston solution for 0, this will be the most serious known counterexample against cosmic censorship. It also provides strong evidence for the self-similarity hypothesis in general relativistic gravitational collapse. The direct consequence is that critical phenomena will be observed in the collapse of isothermal gas in Newton gravity, and the critical exponent γ\gamma will be given by γ0.11\gamma\approx 0.11, though the order parameter cannot be the black hole mass.Comment: 22 pages, 15 figures, accepted for publication in Physical Review D, reference added, typos correcte

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Gravitating discs around black holes

    Full text link
    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole--disc system by analytical solutions of stationary, axially symmetric Einstein's equations. Then, more detailed considerations are focused to middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring, however, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging and completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the environment around. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star--disc interactions, which can be recognised in observational properties, such as the relation between the central mass and stellar velocity dispersion.Comment: Accepted for publication in CQG; high-resolution figures will be available from http://www.iop.org/EJ/journal/CQ

    The stellar content of the Hamburg/ESO survey. V. The metallicity distribution function of the Galactic halo

    Get PDF
    We determine the metallicity distribution function (MDF) of the Galactic halo by means of a sample of 1638 metal-poor stars selected from the Hamburg/ESO objective-prism survey (HES). The sample was corrected for minor biases introduced by the strategy for spectroscopic follow-up observations of the metal-poor candidates, namely "best and brightest stars first". [...] We determined the selection function of the HES, which must be taken into account for a proper comparison between the HES MDF with MDFs of other stellar populations or those predicted by models of Galactic chemical evolution. The latter show a reasonable agreement with the overall shape of the HES MDF for [Fe/H] > -3.6, but only a model of Salvadori et al. (2007) with a critical metallicity for low-mass star formation of Z_cr = 10^{-3.4} * Z_Sun reproduces the sharp drop at [Fe/H] ~-3.6 present in the HES MDF. [...] A comparison of the MDF of Galactic globular clusters and of dSph satellites to the Galaxy shows qualitative agreement with the halo MDF, derived from the HES, once the selection function of the latter is included. However, statistical tests show that the differences between these are still highly significant. [ABSTRACT ABRIDGED]Comment: Accepted for publication in A&
    corecore