34 research outputs found

    S,S,S-Tris(2-ethylhexyl) phosphorotrithioate as an effective solvent mediator for a mexiletine-sensitive membrane electrode

    Get PDF
    S,S,S-Tris(2-ethylhexyl) phosphorotrithioate proved to be an effective solvent mediator for constructing a mexiletine-sensitive membrane electrode in combination with an ion-exchanger, sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate. Among a series of phosphorus compounds containing phosphoryl (P=O) groups, this solvent mediator showed the highest sensitivity to mexiletine in phosphate-buffered physiological saline containing 0.15 mol L-1 NaCl and 0.01 mol L-1 NaH2PO4/Na2HPO4 (pH 7.4), giving a detection limit of 2 x 10(-6) mol L-1 with a slope of 58.8 mV decade(-1). This is the best reported detection limit of any mexiletine-sensitive electrode developed to date. Owing to its high selectivity toward inorganic cations, the electrode was used to determine the level of mexiletine in saliva, the monitoring of which is quite effective for controlling the dose of this drug noninvasively. The mexiletine concentrations determined with the mexiletine-sensitive electrode compared favorably with those determined by high-performance liquid chromatography

    A caffeine-sensitive membrane electrode: Previous misleading report and present approach

    Get PDF
    Although a previous study [S.S.M. Hassan, M.A. Ahmed, M.M. Saoudi, Anal. Chem. 57 (1985) 1126] had shown that a caffeine-sensitive electrode made with picrylsulfonate and 1-octanol as a cation-exchanger and a solvent mediator, respectively, had a wide working pH range (5.5-9.5) and exhibited a Nernstian response, we could not find such response in this electrode. The present result was reasonable, because the pK, value of caffeinium ion was reported to be around 0.7 and the neutral form of caffeine was predominant in the pH range examined. Thus, we reinvestigated the response characteristics of a caffeine electrode, taking into consideration the pKa value, and constructed a new electrode with a combination of the lipophilic cation-exchanger, tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate (HFPB), and the solvent mediator with high degree of dielectric constant, 2-fluoro-2'-nitrodiphenyl ether (FNDPE). This electrode showed a pH-dependent response to caffeinium ion and gave a detection limit of 50 mu M with a slope of 55 mV per concentration decade at pH 2. The use of other solvent mediators was less effective than that of FNDPE. The electrode was applied for the determination of caffeine in some central stimulants

    # ja-Kana

    No full text
    京都大学0048新制・課程博士博士(農学)甲第21376号農博第2300号新制||農||1068(附属図書館)学位論文||H30||N5149(農学部図書室)京都大学大学院農学研究科森林科学専攻(主査)教授 井鷺 裕司, 教授 神﨑 護, 教授 北島 薫学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDGA

    Comparative analysis of spatial genetic structures in sympatric populations of two riparian plants,Saxifraga acerifoliaandSaxifraga fortunei

    No full text
    PREMISE: The genetic structure between plant populations is facilitated by the spatial population arrangement and limited dispersal of seed and pollen. Saxifraga acerifolia, a local endemic species in Japan, is a habitat specialist that is confined to waterfalls in riparian environments. Its sister species, Saxifraga fortunei, is a generalist that is widely distributed along riverbanks. Here, we examined sympatric populations of the two Saxifraga species to test whether the differences in habitat preference and colonization process influenced regional and local genetic structures. METHODS: To reveal genetic structures, we examined chloroplast microsatellite variations and genome-wide nucleotide polymorphisms obtained by genotyping by sequencing. We also estimated the gene flow among and within populations and performed landscape genetic analyses to evaluate seed and pollen movement and the extent of genetic isolation related to geographic distance and/or habitat differences. RESULTS: We found strong genetic structure in the specialist S. acerifolia, even on a small spatial scale (<1 km part); each population on a different waterfall in one river system had a completely different predominant haplotype. By contrast, the generalist S. fortunei showed no clear genetic differentiation. CONCLUSIONS: Our findings suggest that the level of genetic isolation was increased in S. acerifolia by the spatially fragmented habitat and limited seed and pollen dispersal over waterfalls. Habitat differentiation between the sister taxa could have contributed to the different patterns of gene flow and then shaped the contrasting genetic structures
    corecore