69 research outputs found

    Self‐Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquid‐Liquid Phase Separation

    Get PDF
    生体内の高分子混雑に着目した新規の細胞モデルの創成に成功. 京都大学プレスリリース. 2020-12-16.Recently, liquid–liquid phase separation (LLPS) has attracted considerable attention among researchers in the life sciences as a plausible mechanism for the generation of microstructures inside cells. LLPS occurs through multiple nonspecific interactions and does not always require a lock‐and‐key interaction with a binary macromolecular solution. The remarkable features of LLPS include the non‐uniform localization and concentration of solutes, resulting in the ability to isolate certain chemical systems and thereby parallelize multiple chemical reactions within the limited space of a living cell. We report that, by using the macromolecules, poly(ethylene glycol) (PEG) and dextran, that exhibit LLPS in an aqueous solution, cell‐sized liposomes are spontaneously formed therein in the presence of phospholipids. In this system, LLPS is generated through the depletion effect of macromolecules. The results showed that cell‐like microdroplets entrapping DNA wrapped by a phospholipid layer emerge in a self‐organized manner

    Aqueous/Aqueous Micro Phase Separation: Construction of an Artificial Model of Cellular Assembly

    Get PDF
    To artificially construct a three-dimensional cell assembly, we investigated the availability of long-duration microdroplets that emerged near a critical point in an aqueous two-phase system (ATPS) with the hydrophilic binary polymers, polyethylene glycol (PEG), and dextran (DEX), as host containers. We found that erythrocytes (horse red blood cells; RBCs) and NAMRU mouse mammary gland epithelial cells (NMuMG cells) were completely and spontaneously entrapped inside DEX-rich microdroplets. RBCs and NMuMG cells were located in the interior and at the periphery of the droplets at PEG/DEX = 5%:5%. In contrast, the cells exhibited opposite localizations at PEG/DEX = 10%:5%, where, interestingly, NMuMG cells apparently assembled to achieve cell adhesion. We simply interpreted such specific localizations by considering the alternative responses of these cells to the properties of the PEG/DEX interfaces with different gradients in polymer concentrations

    Mitochondrial intermediate peptidase is a novel regulator of sirtuin-3 activation by caloric restriction

    Get PDF
    Sirtuin-3 (SIRT3) regulates mitochondrial quality and is involved in the anti-ageing and pro-longevity actions of caloric restriction (CR). Here, we show that CR upregulates the mature form of SIRT3 and mitochondrial intermediate peptidase (MIPEP), a mitochondrial signal peptidase (MtSPase), in white adipose tissue. We also demonstrate that upregulation of mature SIRT3 is dependent on MIPEP in 3T3-L1 cells, suggesting that MIPEP may contribute to the maintenance of mitochondrial quality during CRvia activation of SIRT3. This novel mechanism of SIRT3 activation through MIPEP facilitates the elucidation of additional molecular pathways of CR

    Production of IgG1-based bispecific antibody without extra cysteine residue via intein-mediated protein trans-splicing.

    Get PDF
    A major class of bispecific antibodies (BsAbs) utilizes heterodimeric Fc to produce the native immunoglobulin G (IgG) structure. Because appropriate pairing of heavy and light chains is required, the design of BsAbs produced through recombination or reassembly of two separately-expressed antigen-binding fragments is advantageous. One such method uses intein-mediated protein trans-splicing (IMPTS) to produce an IgG1-based structure. An extra Cys residue is incorporated as a consensus sequence for IMPTS in successful examples, but this may lead to potential destabilization or disturbance of the assay system. In this study, we designed a BsAb linked by IMPTS, without the extra Cys residue. A BsAb binding to both TNFR2 and CD30 was successfully produced. Cleaved side product formation was inevitable, but it was minimized under the optimized conditions. The fine-tuned design is suitable for the production of IgG-like BsAb with high symmetry between the two antigen-binding fragments that is advantageous for screening BsAbs

    Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody

    Get PDF
    Single-domain antibodies (VHHs or nanobodies), developed from heavy chain-only antibodies of camelids, are gaining attention as next-generation therapeutic agents. Despite their small size, the high affinity and specificity displayed by VHHs for antigen molecules rival those of IgGs. How such small antibodies achieve that level of performance? Structural studies have revealed that VHHs tend to recognize concave surfaces of their antigens with high shape-complementarity. However, the energetic contribution of individual residues located at the binding interface has not been addressed in detail, obscuring the actual mechanism by which VHHs target the concave surfaces of proteins. Herein, we show that a VHH specific for hen egg lysozyme, D3-L11, not only displayed the characteristic binding of VHHs to a concave region of the surface of the antigen, but also exhibited a distribution of energetic hot-spots like those of IgGs and conventional protein-protein complexes. The highly preorganized and energetically compact interface of D3-L11 recognizes the concave epitope with high shape complementarity by the classical lock-and-key mechanism. Our results shed light on the fundamental basis by which a particular VHH accommodate to the concave surface of an antigens with high affinity in a specific manner, enriching the mechanistic landscape of VHHs

    A Proximity‐Induced Fluorogenic Reaction Triggered by Antibody–Antigen Interactions with Adjacent Epitopes

    No full text
    抗体ペアが抗原分子上に反応場をつくり出す --2つの抗体エピトープを利用したテンプレート反応の開発--. 京都大学プレスリリース. 2023-06-23.Proximity-induced chemical reactions are site-specific and rapid by taking advantage of their high affinity and highly selective interactions with the template. However, reactions induced solely by antibody–antigen interactions have not been developed. Herein, we propose a biepitopic antigen-templated chemical reaction (BATER) as a novel template reaction. In BATER, reactive functional groups are conjugated to two antibodies that interact with two epitopes of the same antigen to accelerate the reaction. We developed a method for visualizing the progress of BATER using fluorogenic click chemistry for optimal antibody selection and linker design. The reaction is accelerated in the presence of a specific antigen in a link-er length-dependent manner. The choice of the antibody epitope is important for a rapid reaction. This design will lead to various applications of BATER in living systems

    Click Conjugation of a Binuclear Terbium(III) Complex for Real-Time Detection of Tyrosine Phosphorylation

    No full text
    Phosphorylation of proteins is closely associated with various diseases, and, therefore, its detection is vitally important in molecular biology and drug discovery. Previously, we developed a binuclear Tb­(III) complex, which emits notable luminescence only in the presence of phosphotyrosine. In this study, we conjugated a newly synthesized binuclear Tb­(III) complex to substrate peptides by using click chemistry. Using these conjugates, we were able to detect tyrosine phosphorylation in real time. These conjugates were superior to nonconjugated Tb­(III) complexes for the detection of tyrosine phosphorylation, especially when the substrate peptides used were positively charged. Luminescence intensity upon phosphorylation was enhanced 10-fold, making the luminescence intensity of this system one of the largest among lanthanide luminescence-based systems. We also determined Michaelis–Menten parameters for the phosphorylation of various kinase/peptide combinations and quantitatively analyzed the effects of mutations in the peptide substrates. Furthermore, we successfully monitored the inhibition of enzymatic phosphorylation by inhibitors in real time. Advantageously, this system detects only the phosphorylation of tyrosine (phosphorylated serine and threonine are virtually silent) and is applicable to versatile peptide substrates. Our study thus demonstrates the applicability of this system for the analysis of kinase activity, which could lead to drug discovery

    Proteomic analysis of S-nitrosylation induced by 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) mediates its function through the direct modification of various cellular targets. S-nitrosylation is a post-translational modification of cysteine residues by NO that regulates protein function. Recently, an imbalance of S-nitrosylation has also been linked to neurodegeneration through the impairment of pro-survival proteins by S-nitrosylation.</p> <p>Results</p> <p>In the present study, we used two-dimensional gel electrophoresis in conjunction with the modified biotin switch assay for protein S-nitrosothiols using resin-assisted capture (SNO-RAC) to identify proteins that are S-nitrosylated more intensively in neuroblastoma cells treated with a mitochondrial complex I inhibitor, 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>). We identified 14 proteins for which S-nitrosylation was upregulated and seven proteins for which it was downregulated in MPP<sup>+</sup>-treated neuroblastoma cells. Immunoblot analysis following SNO-RAC confirmed a large increase in the S-nitrosylation of esterase D (ESD), serine-threonine kinase receptor-associated protein (STRAP) and T-complex protein 1 subunit γ (TCP-1 γ) in MPP<sup>+</sup>-treated neuroblastoma cells, whereas S-nitrosylation of thioredoxin domain-containing protein 5 precursor (ERp46) was decreased.</p> <p>Conclusions</p> <p>These results suggest that S-nitrosylation resulting from mitochondrial dysfunction can compromise neuronal survival through altering multiple signal transduction pathways and might be a potential therapeutic target for neurodegenerative diseases.</p

    Heat Resistant Characteristics of Major Royal Jelly Protein 1 (MRJP1) Oligomer

    No full text
    <div><p>Soluble royal jelly protein is a candidate factor responsible for mammiferous cell proliferation. Major royal jelly protein 1 (MRJP1), which consists of oligomeric and monomeric forms, is an abundant proliferative protein in royal jelly. We previously reported that MRJP1 oligomer has biochemical heat resistance. Therefore, in the present study, we investigated the effects of several heat treatments (56, 65 and 96°C) on the proliferative activity of MRJP1 oligomer. Heat resistance studies showed that the oligomer molecular forms were slightly maintained until 56℃, but the molecular forms were converted to macromolecular heat-aggregated MRJP1 oligomer at 65℃ and 96℃. But, the growth activity of MRJP1 oligomer treated with 96°C was slightly attenuated when compared to unheated MRJP1 oligomer. On the other hand, the cell proliferation activity was preserved until 96℃ by the cell culture analysis of Jurkat cells. In contrast, those of IEC-6 cells were not preserved even at 56°C. The present observations suggest that the bioactive heat-resistance properties were different by the origin of the cells. The cell proliferation analysis showed that MRJP1 oligomer, but not MRJP2 and MRJP3, significantly increased cell numbers, suggesting that MRJP1 oligomer is the predominant proliferation factor for mammiferous cells.</p></div
    corecore