2,410 research outputs found

    Superconductivity in undoped T' cuprates with Tc over 30 K

    Full text link
    Undoped cuprates have long been considered to be antiferromagnetic insulators. In this article, however, we report that superconductivity is achieved in undoped T'-RE2CuO4 (RE = Pr, Nd, Sm, Eu, and Gd). Our discovery was performed by using metal-organic decomposition (MOD), an inexpensive and easy-to-implement thin-film process. The keys to prepare the superconducting films are firing with low partial-pressure of oxygen and reduction at low temperatures. The highest Tc of undoped T'-RE2CuO4 is over 30 K, substantially higher than "electron-doped" analogs. Remarkably, Gd2CuO4, even the derivatives of which have not shown superconductivity so far, gets superconducting with Tconset as high as ~ 20 K. The implication of our discovery is briefly discussed.Comment: 22 pages, 5 figures, submitted to Physical Review Letter

    Efficient method for simulating quantum electron dynamics under the time dependent Kohn-Sham equation

    Get PDF
    A numerical scheme for solving the time-evolution of wave functions under the time dependent Kohn-Sham equation has been developed. Since the effective Hamiltonian depends on the wave functions, the wave functions and the effective Hamiltonian should evolve consistently with each other. For this purpose, a self-consistent loop is required at every time-step for solving the time-evolution numerically, which is computationally expensive. However, in this paper, we develop a different approach expressing a formal solution of the TD-KS equation, and prove that it is possible to solve the TD-KS equation efficiently and accurately by means of a simple numerical scheme without the use of any self-consistent loops.Comment: 5 pages, 3 figures. Physical Review E, 2002, in pres

    Large magneto-thermal effect and the spin-phonon coupling in a parent insulating cuprate Pr_{1.3}La_{0.7}CuO_4

    Full text link
    The magnetic-field (H) dependence of the thermal conductivity \kappa of Pr_{1.3}La_{0.7}CuO_4 is found to show a pronounced minimum for in-plane fields at low temperature, which is best attributed to the scattering of phonons by free spins that are seen by a Schottky-type specific heat and a Curie-Weiss susceptibility. Besides pointing to a strong spin-phonon coupling in cuprates, the present result demonstrates that the H-dependence of the phonon heat transport should not be naively neglected when discussing the \kappa(H) behavior of cuprates, since the Schottky anomaly is ubiquitously found in cuprates at any doping.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.

    Two Sizes of Superconducting Gaps on an Under-doped Bi2.1Sr1.9Ca2Cu3O10+δ with TC ∼ 101K by Tunneling Spectroscopy

    Get PDF
    AbstractWe measured tunneling conductances on an under-doped trilayer cuprate Bi2.1Sr1.9Ca2Cu3O10+≏ (Bi2223) with TC ∼ 101K by a point contact method, which has three CuO2 planes in a unit cell. The tunneling conductances on Bi2223 exhibited two sizes of gaps originated from outer and inner CuO2 plane (OP and IP). The estimated size of superconducting gap from OP ΔOP is 34 ± 6 meV, and the ΔIP from IP is 51 ± 5 meV, respectively. We also observed tunneling conductances which simultaneously displayed two superconducting peaks of OP and IP. Moreover, we propose the model of two superconductor-insulator-normal metal junctions which exhibit two sizes gaps of OP and IP

    Theory of double resonance magnetometers based on atomic alignment

    Get PDF
    We present a theoretical study of the spectra produced by optical-radio-frequency double resonance devices, in which resonant linearly polarized light is used in the optical pumping and detection processes. We extend previous work by presenting algebraic results which are valid for atomic states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary geometries. The only restriction made is the assumption of low light intensity. The results are discussed in view of their use in optical magnetometers

    Observation of Andreev bound states in bicrystal grain-boundary Josephson junctions of the electron doped superconductor LaCeCuO

    Get PDF
    We observe a zero-bias conductance peak (ZBCP) in the ab-plane quasiparticle tunneling spectra of thin film grain-boundary Josephson junctions made of the electron doped cuprate superconductor LaCeCuO. An applied magnetic field reduces the spectral weight around zero energy and shifts it non-linearly to higher energies consistent with a Doppler shift of the Andreev bound states (ABS) energy. For all magnetic fields the ZBCP appears simultaneously with the onset of superconductivity. These observations strongly suggest that the ZBCP results from the formation of ABS at the junction interfaces, and, consequently, that there is a sign change in the symmetry of the superconducting order parameter of this compound consistent with a d-wave symmetry.Comment: 9 pages, 7 figures; December 2004, accepted for publication in Phys. Rev.

    Andreev bound states at a cuprate grain boundary junction: A lower bound for the upper critical field

    Full text link
    We investigate in-plane quasiparticle tunneling across thin film grain boundary junctions (GBJs) of the electron-doped cuprate La2x_{2-x}Cex_{x}CuO4_4 in magnetic fields up to B=16B=16 T, perpendicular to the CuO2_2 layers. The differential conductance in the superconducting state shows a zero bias conductance peak (ZBCP) due to zero energy surface Andreev bound states. With increasing temperature TT, the ZBCP vanishes at the critical temperature Tc29T_c\approx29 K if B=0, and at T=12T=12 K for B=16 T. As the ZBCP is related to the macroscopic phase coherence of the superconducting state, we argue that the disappearance of the ZBCP at a field BZBCP(T)B_{ZBCP}(T) must occur below the upper critical field Bc2(T)B_{c2}(T) of the superconductor. We find BZBCP(0)25B_{ZBCP}(0) \approx 25 T which is at least a factor of 2.5 higher than previous estimates of Bc2(0)B_{c2}(0).Comment: 4 pages, 4 figure

    Two-stage spin-flop transitions in S = 1/2 antiferromagnetic spin chain BaCu_2Si_2O_7

    Full text link
    Two-stage spin-flop transitions are observed the in quasi-one-dimensional antiferromagnet, BaCu2{}_2Si2{}_2O7{}_7. A magnetic field applied along the easy axis induces a spin-flop transition at 2.0 T followed by a second transition at 4.9 T. The magnetic susceptibility indicates the presence of Dzyaloshinskii-Moriya (DM) antisymmetric interactions between the intrachain neighboring spins. We discuss a possible mechanism whereby the geometrical competition between DM and interchain interactions, as discussed for the two-dimensional antiferromagnet La2{}_2CuO4{}_4, causes the two-stage spin-flop transitions.Comment: 5 pages, 3 figures (included), accepted for publication in Phys. Rev. Let
    corecore