253 research outputs found

    Impact of accessory gene regulator (agr) dysfunction on vancomycin pharmacodynamics among Canadian community and health-care associated methicillin-resistant Staphylococcus aureus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The accessory gene regulator (<it>agr</it>) is a quorum sensing cluster of genes which control colonization and virulence in <it>Staphylococcus aureus</it>. We evaluated <it>agr </it>function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against <it>agr </it>functional and dysfunctional HA-MRSA and CA-MRSA.</p> <p>Methods</p> <p>40 clinical isolates of MRSA from the Canadian Nosocomial Infection Surveillance Program were evaluated for delta-haemolysin production, as a surrogate marker of <it>agr </it>function. Time kill experiments were performed for vancomycin at 0 to 64 times the MIC against an initial inoculum of 10<sup>6 </sup>and 10<sup>8 </sup>cfu/ml of <it>agr </it>functional and dysfunctional CA-MRSA and HA-MRSA and these data were fit to a hill-type pharmacodynamic model.</p> <p>Results</p> <p>15% isolates were <it>agr </it>dysfunctional, which was higher among HA-MRSA (26.3%) versus CA-MRSA (4.76%). Against a low initial inoculum of 10<sup>6 </sup>cfu/ml of CA-MRSA, vancomycin pharmacodynamics were similar among <it>agr </it>functional and dysfunctional strains. However, against a high initial inoculum of 10<sup>8 </sup>cfu/ml, killing activity was notably attenuated against <it>agr </it>dysfunctional CA-MRSA (USA400) and HA-MRSA (USA100). CA-MRSA displayed a 20.0 fold decrease in the maximal reduction in bacterial counts (Emax) which was 3.71 log<sub>10 </sub>CFU/ml for <it>agr </it>functional vs. 2.41 log<sub>10 </sub>CFU/ml for <it>agr </it>dysfunctional MRSA (p = 0.0007).</p> <p>Conclusions</p> <p>Dysfunction in <it>agr </it>was less common among CA-MRSA vs. HA-MRSA. <it>agr </it>dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA and HA-MRSA, which may have implications for optimal antimicrobial therapy against persistent, difficult to treat MRSA infections.</p

    Colistin and Polymyxin B Dosage Regimens against Acinetobacter baumannii: Differences in Activity and the Emergence of Resistance

    Get PDF
    ABSTRACT Infections caused by multidrug-resistant Acinetobacter baumannii are a major public health problem, and polymyxins are often the last line of therapy for recalcitrant infections by such isolates. The pharmacokinetics of the two clinically used polymyxins, polymyxin B and colistin, differ considerably, since colistin is administered as an inactive prodrug that undergoes slow conversion to colistin. However, the impact of these substantial pharmacokinetic differences on bacterial killing and resistance emergence is poorly understood. We assessed clinically relevant polymyxin B and colistin dosage regimens against one reference and three clinical A. baumannii strains in a dynamic one-compartment in vitro model. A new mechanism-based pharmacodynamic model was developed to describe and predict the drug concentrations and viable counts of the total and resistant populations. Rapid attainment of target concentrations was shown to be critical for polymyxin-induced bacterial killing. All polymyxin B regimens achieved peak concentrations of at least 1 mg/liter within 1 h and caused ≥4 log 10 killing at 1 h. In contrast, the slow rise of colistin concentrations to 3 mg/liter over 48 h resulted in markedly reduced bacterial killing. A significant (4 to 6 log 10 CFU/ml) amplification of resistant bacterial populations was common to all dosage regimens. The developed mechanism-based model explained the observed bacterial killing, regrowth, and resistance. The model also implicated adaptive polymyxin resistance as a key driver of bacterial regrowth and predicted the amplification of preexisting, highly polymyxin-resistant bacterial populations following polymyxin treatment. Antibiotic combination therapies seem the most promising option for minimizing the emergence of polymyxin resistance

    Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet?

    Get PDF
    The polymyxin antibiotics [colistin and polymyxin B (PMB)] are increasingly used as a last-line option for the treatment of infections caused by extensively drug-resistant Gram-negative bacteria. Despite having similar structures and antibacterial activity in vitro, the two clinically available polymyxins have very different pharmacological properties, as colistin (polymyxin E) is intravenously administered to patients in the form of an inactive prodrug colistin methanesulphonate (sodium). This review will discuss recent progress in the pharmacokinetics/pharmacodynamics and toxicity of colistin and PMB, the factors that affect their pharmacological profiles, and the challenges for the effective use of both polymyxins. Strategies are proposed for optimising their clinical utility based upon the recent pharmacological studies in vitro, in animals and patients. In the ‘bad bugs, no drugs’ era, polymyxins are a critically important component of the antibiotic armamentarium against difficult-to-treat Gram-negative ‘superbugs’. Rational approaches to the use of polymyxins must be pursued to increase their effectiveness and to minimise resistance and toxicity

    Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii

    Get PDF
    Combination therapy is deployed for the treatment of multidrug-resistant Acinetobacter baumannii, as it can rapidly develop resistance to current antibiotics. This is the first study to investigate the synergistic effect of colistin/doripenem combination on the metabolome of A. baumannii. The metabolite levels were measured using LC-MS following treatment with colistin (2 mg/L) or doripenem (25 mg/L) alone, and their combination at 15 min, 1 hr and 4 hr (n = 4). Colistin caused early (15 min and 1 hr) disruption of the bacterial outer membrane and cell wall, as demonstrated by perturbation of glycerophospholipids and fatty acids. Concentrations of peptidoglycan biosynthesis metabolites decreased at 4 hr by doripenem alone, reflecting its mechanism of action. The combination induced significant changes to more key metabolic pathways relative to either monotherapy. Down-regulation of cell wall biosynthesis (via D-sedoheptulose 7-phosphate) and nucleotide metabolism (via D-ribose 5-phosphate) was associated with perturbations in the pentose phosphate pathway induced initially by colistin (15 min and 1 hr) and later by doripenem (4 hr). We discovered that the combination synergistically killed A. baumannii via time-dependent inhibition of different key metabolic pathways. Our study highlights the significant potential of systems pharmacology in elucidating the mechanism of synergy and optimizing antibiotic pharmacokinetics/pharmacodynamics

    Polymyxin Resistance in Acinetobacter baumannii: Genetic Mutations and Transcriptomic Changes in Response to Clinically Relevant Dosage Regimens

    Get PDF
    Polymyxins are often last-line therapeutic agents used to treat infections caused by multidrug-resistant A. baumannii. Recent reports of polymyxin-resistant A. baumannii highlight the urgent need for research into mechanisms of polymyxin resistance. This study employed genomic and transcriptomic analyses to investigate the mechanisms of polymyxin resistance in A. baumannii AB307-0294 using an in vitro dynamic model to mimic four different clinically relevant dosage regimens of polymyxin B and colistin over 96 h. Polymyxin B dosage regimens that achieved peak concentrations above 1 mg/L within 1 h caused significant bacterial killing (~5 log10CFU/mL), while the gradual accumulation of colistin resulted in no bacterial killing. Polymyxin resistance was observed across all dosage regimens; partial reversion to susceptibility was observed in 6 of 8 bacterial samples during drug-free passaging. Stable polymyxin-resistant samples contained a mutation in pmrB. The transcriptomes of stable and non-stable polymyxin-resistant samples were not substantially different and featured altered expression of genes associated with outer membrane structure and biogenesis. These findings were further supported via integrated analysis of previously published transcriptomics data from strain ATCC19606. Our results provide a foundation for understanding the mechanisms of polymyxin resistance following exposure to polymyxins and the need to explore effective combination therapies

    Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii

    Get PDF
    The prevalence of heteroresistant Acinetobacter baumannii is increasing. Infections due to these resistant pathogens pose a global treatment challenge. Here, the pharmacodynamic activities of polymyxin B (PMB) (2–20 mg/L) and tigecycline (0.15–4 mg/L) were evaluated as monotherapy and in combination using a 4 × 4 concentration array against two carbapenem-resistant and polymyxin-heteroresistant A. baumannii isolates. Time Kill Experiments was employed at starting inocula of 106 and 108 CFU/mL over 48 h. Clinically relevant combinations of PMB (2 mg/L) and tigecycline (0.90 mg/L) resulted in greater reductions in the bacterial population compared with polymyxin alone by 8 h (ATCC 19606, −6.38 vs. −3.43 log10 CFU/mL; FADDI AB115, −1.38 vs. 2.08 log10 CFU/mL). At 10× the clinically achievable concentration (PMB 20 mg/L in combination with tigecycline 0.90 mg/L), there was bactericidal activity against FADDI AB115 by 4 h that was sustained until 32 h, and against ATCC 19606 that was sustained for 48 h. These studies show that aggressive polymyxin-based dosing in combination with clinically achievable tigecycline concentrations results in early synergistic activity that is not sustained beyond 8 h, whereas combinations with higher tigecycline concentrations result in sustained bactericidal activity against both isolates at both inocula. These results indicate a need for optimised front-loaded polymyxin-based combination regimens that utilise high polymyxin doses at the onset of treatment to achieve good pharmacodynamic activity whilst minimising adverse events

    Comparative pharmacodynamics of four different carbapenems in combination with polymyxin B against carbapenem-resistant Acinetobacter baumannii

    Get PDF
    The objective of this study was to determine the comparative pharmacodynamics of four different carbapenems in combination with polymyxin B (PMB) against carbapenem-resistant Acinetobacter baumannii isolates using time–kill experiments at two different inocula. Two A. baumannii strains (03-149-1 and N16870) with carbapenem minimum inhibitory concentrations (MICs) ranging from 8 to 64 mg/L were investigated in 48-h time–kill experiments using starting inocula of 106 CFU/mL and 108 CFU/mL. Concentration arrays of ertapenem, doripenem, meropenem and imipenem at 0.25×, 0.5×, 1×, 1.5× and 2× published maximum serum concentration (Cmax) values (Cmax concentrations of 12, 21, 48 and 60 mg/L, respectively) were investigated in the presence of 1.5 mg/L PMB. Use of carbapenems without PMB resulted in drastic re-growth. All carbapenem combinations were able to achieve a ≥3 log10 CFU/mL reduction by 4 h against both strains at 106 CFU/mL, whereas maximum reductions against strain 03-149-1 at 108 CFU/mL were 1.0, 3.2, 2.2 and 3.3 log10 CFU/mL for ertapenem, doripenem, meropenem and imipenem, respectively. None of the combinations were capable of reducing 108 CFU/mL of N16870 by ≥2 log10 CFU/mL. Ertapenem combinations consistently displayed the least activity, whereas doripenem, meropenem and imipenem combinations had similar activities that were poorly predicted by carbapenem MICs. As doripenem, meropenem, or imipenem displayed similar pharmacodyanmics in combination, the decision of which carbapenem to use in combination with PMB may be based on toxicodynamic profiles if drastic discordance in MICs is not present

    Combinatorial Pharmacodynamics of Ceftolozane-Tazobactam against Genotypically Defined β-Lactamase-Producing Escherichia coli: Insights into the Pharmacokinetics/Pharmacodynamics of β-Lactam–β-Lactamase Inhibitor Combinations

    Get PDF
    ABSTRACT Despite a dearth of new agents currently being developed to combat multidrug-resistant Gram-negative pathogens, the combination of ceftolozane and tazobactam was recently approved by the Food and Drug Administration to treat complicated intra-abdominal and urinary tract infections. To characterize the activity of the combination product, time-kill studies were conducted against 4 strains of Escherichia coli that differed in the type of β-lactamase they expressed. The four investigational strains included 2805 (no β-lactamase), 2890 (AmpC β-lactamase), 2842 (CMY-10 β-lactamase), and 2807 (CTX-M-15 β-lactamase), with MICs to ceftolozane of 0.25, 4, 8, and >128 mg/liter with no tazobactam, and MICs of 0.25, 1, 4, and 8 mg/liter with 4 mg/liter tazobactam, respectively. All four strains were exposed to a 6 by 5 array of ceftolozane (0, 1, 4, 16, 64, and 256 mg/liter) and tazobactam (0, 1, 4, 16, and 64 mg/liter) over 48 h using starting inocula of 10 6 and 10 8 CFU/ml. While ceftolozane-tazobactam achieved bactericidal activity against all 4 strains, the concentrations of ceftolozane and tazobactam required for a ≥3-log reduction varied between the two starting inocula and the 4 strains. At both inocula, the Hill plots ( R 2 > 0.882) of ceftolozane revealed significantly higher 50% effective concentrations (EC 50 s) at tazobactam concentrations of ≤4 mg/liter than those at concentrations of ≥16 mg/liter ( P < 0.01). Moreover, the EC 50 s at 10 8 CFU/ml were 2.81 to 66.5 times greater than the EC 50 s at 10 6 CFU/ml (median, 10.7-fold increase; P = 0.002). These promising results indicate that ceftolozane-tazobactam achieves bactericidal activity against a wide range of β-lactamase-producing E. coli strains

    Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii

    Get PDF
    ABSTRACT Administering polymyxin antibiotics in a traditional fashion may be ineffective against Gram-negative ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens. Here, we explored increasing the dose intensity of polymyxin B against two strains of Acinetobacter baumannii in the hollow-fiber infection model. The following dosage regimens were simulated for polymyxin B ( t 1/2 = 8 h): non-loading dose (1.43 mg/kg of body weight every 12 h [q12h]), loading dose (2.22 mg/kg q12h for 1 dose and then 1.43 mg/kg q12h), front-loading dose (3.33 mg/kg q12h for 1 dose followed by 1.43 mg/kg q12h), burst (5.53 mg/kg for 1 dose), and supraburst (18.4 mg/kg for 1 dose). Against both A. baumannii isolates, a rapid initial decline in the total population was observed within the first 6 h of polymyxin exposure, whereby greater polymyxin B exposure resulted in greater maximal killing of −1.25, −1.43, −2.84, −2.84, and −3.40 log 10 CFU/ml within the first 6 h. Unexpectedly, we observed a paradoxical effect whereby higher polymyxin B exposures dramatically increased resistant subpopulations that grew on agar containing up to 10 mg/liter of polymyxin B over 336 h. High drug exposure also proliferated polymyxin-dependent growth. A cost-benefit pharmacokinetic/pharmacodynamic relationship between 24-h killing and 336-h resistance was explored. The intersecting point, where the benefit of bacterial killing was equal to the cost of resistance, was an f AUC 0–24 (area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of drug) of 38.5 mg · h/liter for polymyxin B. Increasing the dose intensity of polymyxin B resulted in amplification of resistance, highlighting the need to utilize polymyxins as part of a combination against high-bacterial-density A. baumannii infections
    corecore