3,652 research outputs found

    Fractional Quantum Hall States in Narrow Channels

    Full text link
    A model system is considered where two dimensional electrons are confined by a harmonic potential in one direction, and are free in the other direction. Ground state in strong magnetic fields is investigated through numerical diagonalization of the Hamiltonian. It is shown that the fractional quantum Hall states are realized even in the presence of the external potential under suitable conditions, and a phase diagram is obtained.Comment: 8 pages, 2 figures (not included

    Structure of the Magneto-Exciton and Optical Properties in Fractional Quantum Hall Systems

    Full text link
    We report calculated dependence of magneto-exciton energy spectrum upon electron-hole separation dd in Fractional Quantum Hall systems. We calculated the dependence of photoluminescence upon dd, and we obtained the doublet structure observed recently. The Raman scattering spectrum around resonance is calculated: a robust resonance peak at ν=1/3\nu=1/3 around gap value is reported.Comment: 13 pages, REVTEX, compressed postscript file (3 figures included

    Field-induced breakdown of the quantum Hall effect

    Full text link
    A numerical analysis is made of the breakdown of the quantum Hall effect caused by the Hall electric field in competition with disorder. It turns out that in the regime of dense impurities, in particular, the number of localized states decreases exponentially with the Hall field, with its dependence on the magnetic and electric field summarized in a simple scaling law. The physical picture underlying the scaling law is clarified. This intra-subband process, the competition of the Hall field with disorder, leads to critical breakdown fields of magnitude of a few hundred V/cm, consistent with observations, and accounts for their magnetic-field dependence \propto B^{3/2} observed experimentally. Some testable consequences of the scaling law are discussed.Comment: 7 pages, Revtex, 3 figures, to appear in Phys. Rev.

    Magnetic-field-dependent zero-bias diffusive anomaly in Pb oxide-n-InAs structures: Coexistence of two- and three-dimensional states

    Full text link
    The results of experimental and theoretical studies of zero-bias anomaly (ZBA) in the Pb-oxide-n-InAs tunnel structures in magnetic field up to 6T are presented. A specific feature of the structures is a coexistence of the 2D and 3D states at the Fermi energy near the semiconductor surface. The dependence of the measured ZBA amplitude on the strength and orientation of the applied magnetic field is in agreement with the proposed theoretical model. According to this model, electrons tunnel into 2D states, and move diffusively in the 2D layer, whereas the main contribution to the screening comes from 3D electrons.Comment: 8 double-column pages, REVTeX, 9 eps figures embedded with epsf, published versio

    Thermodynamic Study of Excitations in a 3D Spin Liquid

    Full text link
    In order to characterize thermal excitations in a frustrated spin liquid, we have examined the magnetothermodynamics of a model geometrically frustrated magnet. Our data demonstrate a crossover in the nature of the spin excitations between the spin liquid phase and the high-temperature paramagnetic state. The temperature dependence of both the specific heat and magnetization in the spin liquid phase can be fit within a simple model which assumes that the spin excitations have a gapped quadratic dispersion relation.Comment: 5 figure

    1D generalized statistics gas: A gauge theory approach

    Full text link
    A field theory with generalized statistics in one space dimension is introduced. The statistics enters the scene through the coupling of the matter fields to a statistical gauge field, as it happens in the Chern-Simons theory in two dimensions. We study the particle-hole excitations and show that the long wave length physics of this model describes a gas obeying the Haldane generalized exclusion statistics. The statistical interaction is found to provide a way to describe the low-T critical properties of one-dimensional non-Fermi liquids.Comment: 8 pages, revte

    Conductance and Shot Noise for Particles with Exclusion Statistics

    Full text link
    The first quantized Landauer approach to conductance and noise is generalized to particles obeying exclusion statistics. We derive an explicit formula for the crossover between the shot and thermal noise limits and argue that such a crossover can be used to determine experimentally whether charge carriers in FQHE devices obey exclusion statistics.Comment: 4 pages, revtex, 1 eps figure include

    N=1, D=3 Superanyons, osp(2|2) and the Deformed Heisenberg Algebra

    Get PDF
    We introduce N=1 supersymmetric generalization of the mechanical system describing a particle with fractional spin in D=1+2 dimensions and being classically equivalent to the formulation based on the Dirac monopole two-form. The model introduced possesses hidden invariance under N=2 Poincar\'e supergroup with a central charge saturating the BPS bound. At the classical level the model admits a Hamiltonian formulation with two first class constraints on the phase space T(R1,2)×L11T^*(R^{1,2})\times {\cal L}^{1|1}, where the K\"ahler supermanifold L11OSp(22)/U(11){\cal L}^{1|1}\cong OSp(2|2)/U(1|1) is a minimal superextension of the Lobachevsky plane. The model is quantized by combining the geometric quantization on L11{\cal L}^{1|1} and the Dirac quantization with respect to the first class constraints. The constructed quantum theory describes a supersymmetric doublet of fractional spin particles. The space of quantum superparticle states with a fixed momentum is embedded into the Fock space of a deformed harmonic oscillator.Comment: 23 pages, Late

    Towards a field theory of the fractional quantum Hall states

    Full text link
    We present a Chern-Simons theory of the fractional quantum Hall effect in which flux attachment is followed by a transformation that effectively attaches the correlation holes. We extract the correlated wavefunctions, compute the drift and cyclotron currents (due to inhomogeneous density), exhibit the Read operator, and operators that create quasi-particles and holes. We show how the bare kinetic energy can get quenched and replaced by one due to interactions. We find that for ν=1/2\nu =1/2 the low energy theory has neutral quasiparticles and give the effective hamiltonian and constraints.Comment: Published versio

    Quantum Monte-Carlo method without negative-sign problem for two-dimensional electron systems under strong magnetic fields

    Full text link
    The quantum Monte-Carlo method is applied to two-dimensional electron systems under strong magnetic fields. The negative-sign problem involved by this method can be avoided for certain filling factors by modifying interaction parameters from those of the Coulomb interaction. Our techniques for obtaining sign-problem-free parameters are described in detail. Calculated results on static observables are also reported for Landau level filling ν=1/3\nu = 1/3.Comment: 4 pages, 3 figure
    corecore