26 research outputs found

    Impact ionization mass spectra of anorthite cosmic dust analogue particles

    Get PDF
    Anorthite, the Ca-rich end-member of plagioclase feldspar, is a dominant mineral component of the Lunar highlands. Plagioclase feldspar is also found in comets, meteorites and stony asteroids. It is therefore expected to contribute to the population of interplanetary (and circumplanetary) dust grains within the solar system. After coating micron- and submicron-sized grains of Anorthite with a conductive layer of Platinum, the mineral was successfully accelerated to hypervelocity speeds in the Max Planck Institut für Kernphysik’s Van de Graaff accelerator. We present impact ionization mass spectra generated following the impacts of anorthite grains with a prototype mass spectrometer (the Large Area Mass Analyser, LAMA) designed for use in space, and discuss the behavior of the spectra with increasing impact energy. Correlation analysis is used to identify the compositions and sources of cations present in the spectra, enabling the identification of several molecular cations (e.g., CaAlO2, CaSiO2, Ca2AlO3/CaAlSi2O2) which identify anorthite as the progenitor bulk grain material

    Ion attachment mass spectrometry combined with infrared image furnace for thermal analysis: Evolved gas analysis studies

    No full text
    International audienceA well-established ion attachment mass spectrometer (IAMS) is combined with an in-house single-atom infrared image furnace (IIF) specifically for thermal analysis studies. Besides the detection of many chemical species at atmospheric pressure, including free radical intermediates, the ion attachment mass spectrometer can also be used for the analysis of products emanating from temperature-programmed pyrolysis. The performance and applicability of the IIF-IAMS is illustrated with poly(tet-rafluoroethylene) (PTFE) samples. The potential of the system for the analysis of oxidative pyrolysis is also considered. Temperature-programmed decomposition of PTFE gave constant slopes of the plots of temperature versus signal intensity in a defined region and provided an apparent activation energy of 28.8 kcal/mol for the PTFE decomposition product (CF2)3. A brief comparison with a conventional pyrolysis gas chromatography/ mass spectrometry system is also given. Cop. 2009 American Chemical Society
    corecore