951 research outputs found

    Phase Separation of a Fast Rotating Boson-Fermion Mixture in the Lowest-Landau-Level Regime

    Full text link
    By minimizing the coupled mean-field energy functionals, we investigate the ground-state properties of a rotating atomic boson-fermion mixture in a two-dimensional parabolic trap. At high angular frequencies in the mean-field-lowest-Landau-level regime, quantized vortices enter the bosonic condensate, and a finite number of degenerate fermions form the maximum-density-droplet state. As the boson-fermion coupling constant increases, the maximum density droplet develops into a lower-density state associated with the phase separation, revealing characteristics of a Landau-level structure

    Energy Spectra of Quantum Turbulence: Large-scale Simulation and Modeling

    Get PDF
    In 204832048^3 simulation of quantum turbulence within the Gross-Pitaevskii equation we demonstrate that the large scale motions have a classical Kolmogorov-1941 energy spectrum E(k) ~ k^{-5/3}, followed by an energy accumulation with E(k) ~ const at k about the reciprocal mean intervortex distance. This behavior was predicted by the L'vov-Nazarenko-Rudenko bottleneck model of gradual eddy-wave crossover [J. Low Temp. Phys. 153, 140-161 (2008)], further developed in the paper.Comment: (re)submitted to PRB: 5.5 pages, 4 figure

    Reconnection and acoustic emission of quantized vortices in superfluid by the numerical analysis of the Gross-Pitaevskii equation

    Full text link
    We study numerically the reconnection of quantized vortices and the concurrent acoustic emission by the analysis of the Gross-Pitaevskii equation. Two quantized vortices reconnect following the process similar to classical vortices; they approach, twist themselves locally so that they become anti-parallel at the closest place, reconnect and leave separately.The investigation of the motion of the singular lines where the amplitude of the wave function vanishes in the vortex cores confirms that they follow the above scenario by reconnecting at a point. This reconnection is not contradictory to the Kelvin's circulation theorem, because the potential of the superflow field becomes undefined at the reconnection point. When the locally anti-parallel part of the vortices becomes closer than the healing length, it moves with the velocity comparable to the sound velocity, emits the sound waves and leads to the pair annihilation or reconnection; this phenomena is concerned with the Cherenkov resonance. The vortices are broken up to smaller vortex loops through a series of reconnection, eventually disappearing with the acoustic emission. This may correspond to the final stage of the vortex cascade process proposed by Feynman. The change in energy components, such as the quantum, the compressible and incompressible kinetic energy is analyzed for each dynamics. The propagation of the sound waves not only appears in the profile of the amplitude of the wave function but also affects the field of its phase, transforming the quantum energy due to the vortex cores to the kinetic energy of the phase field.Comment: 11 pages, 16 figures, LaTe

    Vortex Multiplication in Applied Flow: the Precursor to Superfluid Turbulence

    Full text link
    The dynamics of quantized vortices in rotating 3^3He-B is investigated in the low density (single-vortex) regime as a function of temperature. An abrupt transition is observed at 0.5Tc0.5 T_{\rm c}. Above this temperature the number of vortex lines remains constant, as they evolve to their equilibrium positions. Below this temperature the number of vortices increases linearly in time until the vortex density has grown sufficiently for turbulence to switch on. On the basis of numerical calculations we suggest a mechanism responsible for vortex formation at low temperatures and identify the mutual friction parameter which governs its abrupt temperature dependence.Comment: 5 pages, 4 figures; version submitted to Phys. Rev. Let

    Quantum Turbulence in a Trapped Bose-Einstein Condensate

    Full text link
    We study quantum turbulence in trapped Bose-Einstein condensates by numerically solving the Gross-Pitaevskii equation. Combining rotations around two axes, we successfully induce quantum turbulent state in which quantized vortices are not crystallized but tangled. The obtained spectrum of the incompressible kinetic energy is consistent with the Kolmogorov law, the most important statistical law in turbulence.Comment: 4 pages, 4 figures, Physical Review A 76, 045603 (2007

    Route to turbulence in a trapped Bose-Einstein condensate

    Full text link
    We have studied a Bose-Einstein condensate of 87Rb^{87}Rb atoms under an oscillatory excitation. For a fixed frequency of excitation, we have explored how the values of amplitude and time of excitation must be combined in order to produce quantum turbulence in the condensate. Depending on the combination of these parameters different behaviors are observed in the sample. For the lowest values of time and amplitude of excitation, we observe a bending of the main axis of the cloud. Increasing the amplitude of excitation we observe an increasing number of vortices. The vortex state can evolve into the turbulent regime if the parameters of excitation are driven up to a certain set of combinations. If the value of the parameters of these combinations is exceeded, all vorticity disappears and the condensate enters into a different regime which we have identified as the granular phase. Our results are summarized in a diagram of amplitude versus time of excitation in which the different structures can be identified. We also present numerical simulations of the Gross-Pitaevskii equation which support our observations.Comment: 6 pages, 3 figure

    Theory of vortex-lattice melting in a one-dimensional optical lattice

    Full text link
    We investigate quantum and temperature fluctuations of a vortex lattice in a one-dimensional optical lattice. We discuss in particular the Bloch bands of the Tkachenko modes and calculate the correlation function of the vortex positions along the direction of the optical lattice. Because of the small number of particles in the pancake Bose-Einstein condensates at every site of the optical lattice, finite-size effects become very important. Moreover, the fluctuations in the vortex positions are inhomogeneous due to the inhomogeneous density. As a result, the melting of the lattice occurs from the outside inwards. However, tunneling between neighboring pancakes substantially reduces the inhomogeneity as well as the size of the fluctuations. On the other hand, nonzero temperatures increase the size of the fluctuations dramatically. We calculate the crossover temperature from quantum melting to classical melting. We also investigate melting in the presence of a quartic radial potential, where a liquid can form in the center instead of at the outer edge of the pancake Bose-Einstein condensates.Comment: 17 pages, 17 figures, submitted to Phys. Rev. A, references update
    • …
    corecore