317 research outputs found

    The Nile Water-Food-Energy Nexus under Uncertainty: Impacts of the Grand Ethiopian Renaissance Dam

    Get PDF
    This is the author accepted manuscript. The final version is available from ASCE via the DOI in this recordData Availability Statement: All data, models, code that support the findings of this study are available from the corresponding author upon request.Achieving a water, food, and energy (WFE) nexus balance through policy interventions is challenging in a transboundary river basin because of the dynamic nature and intersectoral complexity that may cross borders. The Nile basin is shared by a number of riparian countries and is currently experiencing rapid population and economic growth. This has sparked new developments to meet the growing water, food, and energy demands, alleviate poverty, and improve the livelihood in the basin. Such developments could result in basinwide cooperation or trigger conflicts among the riparian countries. A system dynamics model was developed for the entire Nile basin and integrated with the food and energy sectors in Egypt to investigate the future of the WFE nexus with and without the Grand Ethiopian Renaissance Dam (GERD) during filling and subsequent operation using basinwide stochastically generated flows. Different filling rates from 10% to 100% of the average monthly flow are considered during the filling process. Results suggest that the GERD filling and operation would affect the WFE nexus in Egypt, with the impact likely to be significant if the filling process occurred during a dry period. Food production from irrigated agriculture would be reduced by 9%–19% during filling and by about 4% during GERD operation compared with the case without it. The irrigation water supply and hydropower generation in Sudan will be reduced during the filling phase of the GERD, but this is expected to be improved during the dam operation phase as a result of the regulation afforded by the GERD. Ethiopian hydropower generation is expected to be boosted by the GERD during the filling and operation of the dam, adding an average of 15,000  GWh/year once GERD comes online. Lastly, the results reveal the urgency of cooperation and coordination among the riparian countries to minimize the regional risks and maximize the regional rewards associated with the GERD.Ministry of Higher Education (MoHE), EgyptUniversity of Exete

    Raman enhancement of rhodamine adsorbed on Ag nanoparticles self-assembled into nanowire-like arrays

    Get PDF
    This work reports on Raman scattering of rhodamine (R6G) molecules absorbed on either randomly distributed or grating-like arrays of approximately 8-nm Ag nanoparticles developed by inert gas aggregation. Optimal growth and surface-enhanced Raman scattering (SERS) parameters have been obtained for the randomly distributed nanoparticles, while effects related to the aging of the silver nanoparticles were studied. Grating-like arrays of nanoparticles have been fabricated using line arrays templates formed either by fracture-induced structuring or by standard lithographic techniques. Grating structures fabricated by both methods exhibit an enhancement of the SERS signal, in comparison to the corresponding signal from randomly distributed Ag nanoparticles, as well as a preferential enhancement in the areas of the sharp features, and a dependence on the polarization direction of the incident exciting laser beam, with respect to the orientation of the gratings structuring. The observed spectroscopic features are consistent with a line-arrangement of hot-spots due to the self- alignment of metallic nanoparticles, induced by the grating-like templates

    Peripheral image quality in pseudophakic eyes

    Get PDF
    The purpose of this work was to evaluate peripheral image quality in the pseudophakic eye using computational, physical, and psychophysical methods. We designed and constructed a physical model of the pseudophakic human eye with realistic dimensions using a corneal phantom and a board-only camera that was pivoted around an axis that matched the anatomical center of a human retina, assuming a radius of curvature of 12 mm, while it was submersed in a 23.4 mm long water filled chamber to emulate human ocular axial length. We used this optical setup to perform direct recording of the point spread function (PSF) and the associated retinal images for a commercial intraocular lens (IOL). Additionally, psychophysical tests were carried out to investigate the impact of the off-axis astigmatism in peripheral visual performance, where spectacle-induced astigmatism simulated the pseudophakic conditions in healthy subjects. Our findings using the physical eye model confirm the existence of large amounts of astigmatism in the periphery of the pseudophakic eye. The psychophysical tests revealed a significant reduction of detection sensitivity in the peripheral visual field. The latter suggests that off-axis astigmatism in patients implanted with IOLs may have performance and safety implications for activities requiring efficient peripheral vision

    The relationship between Higher Education and labour market in Greece : the weakest link?

    Get PDF
    The high level of graduate unemployment, even though it is acknowledged as one of the most distinctive characteristics of the Greek labour market, it has not attracted enough attention in the academic literature. This paper utilizes micro-data from the Labour Force Survey in order to investigate how the employment situation of young (aged 35 and below) graduates varies across fields of study. The findings suggest that graduates of disciplines that have high levels of private sector employment, such as Polytechnics and Computer Science, are in general better off in the Greek labour market. On the other hand, graduates of disciplines that are traditionally related to the needs of the public sector, such as Sociology and Humanities, face poor employment prospects. The findings of this study highlight the need for drastic reforms of the Higher Education system

    Water-food-energy nexus for transboundary cooperation in Eastern Africa

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from IWA Publishing via the DOI in this recordEstablishing cooperation in transboundary rivers is challenging especially with the weak or non-existent river basin institutions. A nexus-based approach is developed to explore cooperation opportunities in transboundary river basins while considering system operation and coordination under uncertain hydrologic river regimes. The proposed approach is applied to the Nile river basin with a special focus on the Grand Ethiopian Renaissance Dam (GERD), assuming two possible governance positions: with or without cooperation. A cooperation mechanism is developed to allocate additional releases from the GERD when necessary, while a unilateral position assumes that the GERD is operated to maximize hydropower generation regardless of downstream users' needs. The GERD operation modes were analysed considering operation of downstream reservoirs and varying demands in Egypt. Results show that average basin-wide hydropower generation is likely to increase by about 547 GWh/year (1%) if cooperation is adopted when compared to the unilateral position. In Sudan, hydropower generation and water supply are expected to enhance in the unilateral position and would improve further with cooperation. Furthermore, elevated low flows by the GERD are likely to improve the WFE nexus outcomes in Egypt under full cooperation governance scenario with a small reduction in GERD hydropower generation (2,000 GWh/year (19%)).Ministry of Higher Education (MoHE), EgyptUniversity of Exete

    Instability of brane cosmological solutions with flux compactifications

    Full text link
    We discuss the stability of the higher-dimensional de Sitter (dS) brane solutions with two-dimensional internal space in the Einstein-Maxwel theory. We show that an instability appears in the scalar-type perturbations with respect to the dS spacetime. We derive a differential relation which has the very similar structure to the ordinary laws of thermodynamics as an extension of the work for the six-dimensional model [20]. In this relation, the area of dS horizon (integrated over the two internal dimensions) exactly behaves as the thermodynamical entropy. The dynamically unstable solutions are in the thermodynamically unstable branch. An unstable dS compactification either evolves toward a stable configuration or two-dimensional internal space is decompactified. These dS brane solutions are equivalent to the accelerating cosmological solutions in the six-dimensional Einstein-Maxwell-dilaton theory via dimensional reduction. Thus, if the seed higher-dimensional solution is unstable, the corresponding six-dimensional solution is also unstable. From the effective four-dimensional point of view, a cosmological evolution from an unstable cosmological solution in higher dimensions may be seen as a process of the transition from the initial cosmological inflation to the current dark energy dominated Universe.Comment: 11 pages, 3 figures, references added, to appear in CQ

    Authentication with Weaker Trust Assumptions for Voting Systems

    Get PDF
    Some voting systems are reliant on external authentication services. Others use cryptography to implement their own. We combine digital signatures and non-interactive proofs to derive a generic construction for voting systems with their own authentication mechanisms, from systems that rely on external authentication services. We prove that our construction produces systems satisfying ballot secrecy and election verifiability, assuming the underlying voting system does. Moreover, we observe that works based on similar ideas provide neither ballot secrecy nor election verifiability. Finally, we demonstrate applicability of our results by applying our construction to the Helios voting system

    Early prediction of COVID-19 outcome using artificial intelligence techniques and only five laboratory indices

    Get PDF
    We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 (COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 248 consecutive adult COVID-19 patients for database creation, training, and development of ANN models. We developed a new alpha-index to assess association of each parameter with outcome. We used 166 records for training of computational simulations (training), 41 for documentation of computational simulations (validation), and 41 for reliability check of computational simulations (testing). The first five laboratory indices ranked by importance were Neutrophil-to-lymphocyte ratio, Lactate Dehydrogenase, Fibrinogen, Albumin, and D-Dimers. The best ANN based on these indices achieved accuracy 95.97%, precision 90.63%, sensitivity 93.55%. and F1-score 92.06%, verified in the validation cohort. Our preliminary findings reveal for the first time an ANN to predict ICU hospitalization accurately and early, using only 5 easily accessible laboratory indices
    corecore