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A B S T R A C T   

We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 
(COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 
248 consecutive adult COVID-19 patients for database creation, training, and development of ANN models. We 
developed a new alpha-index to assess association of each parameter with outcome. We used 166 records for 
training of computational simulations (training), 41 for documentation of computational simulations (valida-
tion), and 41 for reliability check of computational simulations (testing). The first five laboratory indices ranked 
by importance were Neutrophil-to-lymphocyte ratio, Lactate Dehydrogenase, Fibrinogen, Albumin, and D-Di-
mers. The best ANN based on these indices achieved accuracy 95.97%, precision 90.63%, sensitivity 93.55%. and 
F1-score 92.06%, verified in the validation cohort. Our preliminary findings reveal for the first time an ANN to 
predict ICU hospitalization accurately and early, using only 5 easily accessible laboratory indices.   

1. Introduction 

The Coronavirus disease-19 (COVID-19) pandemic has 

unprecedented impact on all aspects of human activity worldwide. 
Although vaccination, anti-viral treatment and monoclonal antibodies 
have positively impacted the course of this pandemic [1], reduction of 
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morbidity and mortality due to severe COVID-19remains an unmet 
clinical need. In this context, several groups worldwide have investi-
gated routine laboratory, biochemical and coagulation indices in severe 
COVID-19. Summarizing the early studies, Terpos et al. have highlighted 
that lymphopenia, neutrophil/lymphocyte ratio (NLR), inflammatory 
indices, including lactate dehydrogenase (LDH), and C-reactive protein 
(CRP), as well coagulation abnormalities, such as prothrombin (PT) time 
prolongation, are important in COVID-19 [2]. In addition, systematic 
reviews and meta-analyses have tried to identify biomarkers associated 
with COVID-19 progression [3,4]. Among them, NLR, ferritin and LDH 
have been the major markers recognized as predictors of high-risk pa-
tients [5,6]. 

During the last two years, a plethora of studies employing ANNs have 
also emerged focusing on COVID-19 prediction problems [7–13]. 
Development of artificial neural networks (ANNs) is based on the 
concept of the biological neural network of the human brain and was 
initially used for medicine research purposes to simulate strongly non- 
linear relationships between numerous input and output parameters 
[14–20]. ANN models were subsequently introduced into the wider 
context of engineering disciplines [21–23], which significantly enriched 
the mathematical background underpinning ANN. 

Despite scientific breakthroughs during COVID-19, there is no risk 
prediction model that can be used in clinical practice to identify COVID- 
19 severity early in the disease course. Our group has recently described 
risk prediction models and artificial neural networks (ANN)with high 
sensitivity and specificity for prediction of both morbidity and mortality 
from COVID-19 [8]. Nevertheless, these models were based on genetic 
susceptibility identifying complement genetic variants in COVID-19 
patients [7,24,25], requiring genetic screening for several mutations 
which cannot be applied in the general population. 

Therefore, we designed the present study aiming to provide a risk 
prediction model of COVID-19 outcome using ANN and the minimum 
number of routine laboratory indices. To increase the value of our model 
as an early predictor for clinical practice, we utilized laboratory indices 
from the day of first presentation to the Emergency department that will 
be further referred to as admission. 

2. Materials and methods 

2.1. Artificial neural networks 

The basic building block of ANNs is the artificial neuron, which is a 
mathematical model mimicking the behavior of the biological neuron. 
Information is passed onto the artificial neuron as a vector of input 
parameters and is then processed using a mathematical function to 
derive an output which determines the behavior of the neuron (similar 
to the fire-or-not situation of the biological neuron). Before the infor-
mation enters the neuron, it is weighted in order to process the inputs 
collectively. More precisely, each artificial neuron has inputs and pro-
duces a single output which can be sent to multiple other neurons. The 
inputs can be the feature values of a sample of external data, such as the 
values of a set of indicators, or they can be the outputs of other neurons. 
The outputs of the final output neurons of the neural network accom-
plish the task, such as classifying the input vectors. A group of such 
neurons comprise an ANN, similar to the structure of biological neural 
networks. To define an ANN, (i) the architecture of the ANN, (ii) the 
training algorithm used during the ANN’s training stage and (iii) the 
mathematical functions underpinning the mathematical model are 
required. The architecture of the ANN defines how the artificial neurons 
are organized and how the information flows within the network. In 
most applications the neurons are organized in a series of layers 
comprising a network called a multilayer ANN. The training stage can be 
considered as a function minimization problem, in which the optimum 
weight values need to be determined by minimizing an error function 
which is the sum of squared differences between outputs of each neuron 
in the last layer to each component of the vector of observations. This is 

done by a special learning algorithm that adjusts the values of the 
weights of each neuron successively for each layer to achieve conver-
gence to the minimum error and corresponding optimal values for the 
whole of weights. 

2.2. Study population 

We enrolled consecutive adult patients with COVID-19 from Attikon 
Hospital, Athens, Greece (May 2020–April 2021). All 248 patients met 
the following inclusion criteria: 1. routine laboratory testing (hematol-
ogy, biochemical and coagulation profile) at admission, 2. RT-PCR test 
positive for SARS-COV2, 3. no history of COVID-19 vaccination. Table 1 
summarizes demographics according to age, gender and disease severity 
(requiring or not hospitalization in intensive care unit (ICU)). The study 
was performed according to the Helsinki Declaration and approved by 
the Ethics Committee of Attikon Hospital (9.16/6/2020). 

2.3. Compiled database 

Laboratory parameters at admission were used for the creation of the 
database and the subsequent training and development of the ANN 
models. More specifically, 25 laboratory indices for each patient were 
determined which they comprised the input parameters of ANN models 
while output parameter was defined to be the outcome of the hospital-
ization for the patient. The output value is a binary parameter that takes 
value 2 or 1 according to the need for hospitalization or not of the pa-
tient in intensive care unit (ICU). 

Table 2 presents statistical indices (minimum, average and 
maximum value as well as the standard deviation) for each of the 25 
laboratory indices. The database with the patients’ hematological 
indices is appended to this paper as supplementary material in the excel 
file entitled Database – Hematological indices. 

2.4. Proposed index for the assessment of laboratory indices 

The training and development procedure of a mathematical simu-
lation for prediction of disease outcome using the database of 25 labo-
ratory indices, presented in the previous section, is considered 
challenging, given the huge number of possible combinations among 
them. More specifically, the possible combinations of the 25 laboratory 
indices are described by the following equation: 

Combinations =
∑25

i=1

25!
i!(25 − i)!

= 33.554.431 (1) 

It should be also noted that for each of the above different combi-
nations it is necessary to investigate 1.500.000 different architectures 
ANNs. For this purpose, in the present work a new index, the alpha- 
index is proposed, that has aimed to metrize each one of the 25 labo-
ratory indices according to their impact on COVID-19 severity. Addi-
tionally, we aimed that this index is simple and clinically meaningful. 

According to these, the below alpha-index is proposed based on the 
variation of the mean value of the laboratory index of patients that did 

Table 1 
Study population categorized by age, gender and disease severity (requiring or 
not hospitalization in intensive care unit (ICU)).  

Severe Age All patients Male Female 

All patients (not in ICU and in ICU) 

Up to 65 142 85 57 
Over 65 106 65 41 
All Ages 248 150 98 

not in ICU 

Up to 65 24 17 7 
Over 65 38 27 11 
All Ages 62 44 18 

ICU 

Up to 65 118 68 50 
Over 65 68 38 30 
All Ages 186 106 80  

P.G. Asteris et al.                                                                                                                                                                                                                               



Clinical Immunology 246 (2023) 109218

3

not require ICU hospitalization compared to the mean value of the 
laboratory index of the patients that required ICU admission (Fig. 1): 

alpha(i) − index =
μnotinICU

i − μinICU
i

max(i) − min(i)
(2)  

where 
i is the laboratory index i (i = 1 to 25), 
μi

not in ICU the mean value of laboratory index i for COVID-19 infected 
patients who did not require hospitalization in ICU, 

μi
in ICU the mean value of laboratory index I for COVID-19 infected 

patients who require hospitalization in ICU, 
min(i) the minimum value of laboratory index i for all COVID-19 

infected patients, and. 
max(i) the maximum value of laboratory index i for all COVID-19 

infected patients. 

According to the above definition, a value of the index greater than 
zero means that increase of the value of the laboratory index drives into 
ICU, whereas value of the index less than zero means that decrease of the 
value of the laboratory index predicts ICU hospitalization. It is note-
worthy that the index takes values between − 100 and 100. 

2.5. Performance analysis indices 

For assessing the performance of the computational models that were 
trained and developed in the present study, we used the classical indices 
that are widely acceptable in the international literature for the assess-
ment of binary classification problems, as shown below [1]. 

Precision =
TruePositive (TP)

TruePositive + FalsePositive (FP)
(3)  

Table 2 
Database statistics. Minimum, average, maximum and standard deviation of the input parameters (25 hematological indices) and the output parameter (COVID-19 
Severe, value equal to 1 means that the effected patient is requiring hospitalization in intensive care unit (ICU) while value equal to 2 means that the effected patient is 
not requiring hospitalization in intensive care unit (ICU).  

Nr Variable Symbol Units Statistics 

Min Average Max STD 

1 White Blood Cell count per volume WBC 4–10.5 kcell/μL 1.16 7.01 38.60 3.82 
2 Neutrophil count per volume Neut 0.9–7 kcell/μL 0.59 5.17 35.30 3.58 
3 Lymphocyte count per volume Lympo 0.7–3.7 kcell/μL 0.25 1.19 16.90 1.16 
4 Neutrophil-to-lymphocyte ratio NLR 0.8–3.6 (ratio) 0.19 6.14 36.31 5.94 
5 Immature Granulocyte count per volume IG <0.03 kcell/μL 0.00 0.04 1.31 0.11 
6 IG-to-lymphocyte ratio IGLR 0.5–4.8 (ratio x100) 0.00 4.23 124.76 12.09 
7 Hemoglobin concentration Hb 12.0–16.9 g/dL 7.63 13.02 16.70 1.88 
8 Mean Cell Volume of RBCs MCV 79–98 fL 54.40 84.89 98.90 7.71 
9 Red cell Distribution Width RDW 11.5–14% 10.50 13.41 27.40 1.99 
10 Percent microcytic RBCs %MIC 0.2–2.5% 0.45 6.53 75.80 12.24 
11 Percent macrocytic BCs %MAC 0.1–9.1% 0.01 0.25 4.66 0.57 
12 Percentage of hypochromic BCs %HPO 0.1–1.4% 0.36 6.47 82.00 13.22 
13 Hemoglobin Distribution Width HDW 4.0–5.9% 5.03 7.13 15.40 1.85 
14 Platelet cell count per volume PLT 140–440 kcell/μL 40.30 219.90 766.00 94.24 
15 D-Dimers D-Dimers <500 ng/mL 170.70 1134.04 8901.80 1258.01 
16 C-reactive protein CRP 0.00–6 mg/L 3.11 73.42 1170.00 98.80 
17 Fibrinogen Fib 200–400 mg/dL 199.00 489.39 948.50 149.55 
18 Ferritin Ferritin 13–150 ng/mL 5.00 748.66 17,158.00 1317.50 
19 Pro-brain natriuretic peptide ProBNP < 125 pg/mL 5.30 1082.27 38,000.00 4259.80 
20 Procalcitonin pCT <0.5 ng/mL 0.02 11.32 721.00 49.59 
21 Lactate Dehydrogenase LDH 135–225 U/L 103.00 316.22 1652.00 187.61 
22 Total bilirubin Tbil < 1.20 mg/dL 0.11 0.50 5.02 0.42 
23 Albumin Alb 3.5–5.2 g/dL 1.90 3.92 5.50 0.52 
24 Calcium (serum) Ca + 2 8.6–10.3 mg/dL 6.40 8.74 11.30 0.64 
25 Creatinine (serum) Creat 0.5–0.9 mg/dL 0.30 1.24 11.40 1.49 
26 COVID-19 Severe COVID-19 Severe 1: not in ICU while 2: in ICU 1.00 1.25 2.00 0.43  

Fig. 1. Shape, parameters and terminology of Gaussian function of the study population categorized by the need of requiring or not hospitalization in intensive care 
unit (ICU). 
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SensitivityorRecall =
TruePositive

TruePositive + FalseNegative (FN)
(4)  

F1 − Score =
2 × Precision × Recall

Precision + Recall
(5)  

Accuracy =
TP + TN

TP + FP + TN + FN
(6) 

For the successful application of the indices above, we clarified 
which are the two states that the computational models are required to 
estimate. With the term Positive we defined the case of the patient with 
COVID-19 hospitalized in ICU while the term Negative characterized the 
patient who did not require ICU hospitalization. 

3. Results 

3.1. Ranking of laboratory indices based on the proposed new alpha- 
index 

With use of the proposed alpha index, the values for each one of the 
25 laboratory indices were computed. According to these, the laboratory 
indices were ranked in decreasing order, as presented in Fig. 2. The first 
five ranked by importance were Neutrophil-to-lymphocyte ratio (NLR), 
Lactate Dehydrogenase (LDH), Fibrinogen (Fib), Albumin (Alb) and D- 
Dimers. The reliability check of the proposed index was documented 
with the feasibility, the training, and development of ANN models with 
small number of laboratory indices and additionally those according to 
the importance ranking (input parameters) that predict reliably if the 
patient shall be admitted to ICU or not. 

3.2. Development of ANN models 

In the current section we present the process of training and devel-
opment of ANN models for the estimation of COVID-19 outcome. More 
specifically, models were trained and developed with respect to the 

number of laboratory indices they use as input parameters. That is 10 
different cases of ANN models with 1 to 10 with step 1 laboratory indices 
as input parameters following the order with which they were ranked 
according to the alpha index (Fig. 2). 

ANN models were trained and designed with the use of the database 
comprised of 248 records. The 248 records correspond to the 248 pa-
tients studied. Еach is comprised from 25 values of laboratory indices 
and the outcome of hospitalization of each patient. The 248 records 
were split in three parts and specifically, i) 166 (66.94%) records used 
for the training of the computational simulations (training dataset), ii) 
41 (16.54%) records used for documentation of the computational 
simulations (validation dataset) and iii) 41 (16.54%) records used for 
the reliability check of the computational simulations(testing dataset). 

Namely, for the work presented herein the testing datasets have been 
used as a cohort study to further support our findings. Table 3 shows a 
detailed presentation of the key parameters used for the training and 
development of the optimum ANN models, including the training al-
gorithms, the number of neurons per hidden layer and the cost and 
transfer functions. 

According to parameters used, models were trained and developed 
1.500.000 different architectures ANN’s for each one of the 10 different 
cases with respect to the number of laboratory indices as input param-
eters. Table 4 presents the respective 10 best architectures together with 
the performance indices for each one of them. According to this, the best 
ANN architecture model corresponds to the one with only 5 input pa-
rameters as follows:  

1. Neutrophil-to-lymphocyte ratio (NLR),  
2. Lactate Dehydrogenase (LDH),  
3. Fibrinogen (Fib),  
4. Albumin (Alb), and  
5. D-Dimers. 

The ANN model with only these five laboratory indices achieves 
extremely high performances with respect to the outcome of COVID-19. 
Furthermore, to the best of authors’ knowledge, it achieves the best 
prediction from the totality of the computational models that have been 
proposed at present in the literature. More specifically it achieves 

Fig. 2. Ranking of the hematological indices based on the proposed new 
alpha-index. 

Table 3 
Training parameters of ANN models.  

Parameter Value 

Training Algorithm 

Levenberg–Marquardt algorithm (LM) 
algorithm 
particle swarm optimization (PSO) algorithm 
Grey Wolf Optimization (GWO) Algorithm 
algorithm 

Normalization Minmax in the range 0.10–0.90, 0.00–1.00 
-1.00-1.00 

Number of Hidden Layers 1 
Number of Neurons per Hidden 

Layer 1 to 50 by step 1 

Control random number 
generation 

10 different random generation 

Maximum number of Epochs 250 

Cost Function Mean Square Error (MSE) 
Sum Square Error (SSE) 

Transfer Functions 

Hyperbolic Tangent Sigmoid transfer function 
(HTS) 
Log-sigmoid transfer function (LS) 
Linear transfer function (Li) 
Positive linear transfer function (PLi) 
Symmetric saturating linear transfer function 
(SSL) 
Soft max transfer function (SM) 
Competitive transfer function (Co) 
Triangular basis transfer function (TB) 
Radial basis transfer function (RB) 
Normalized radial basis transfer function (NRB)  
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accuracy 95.97%, precision 90.63%, sensitivity or recall 93.55% and F1- 
score 92.06%. Cross-validation techniques have been also used in our 
work presented here. It is worth stressing that the same results have been 
deduced both at the two halves of the database and at the whole. Five- 
fold cross-validation has been applied based on accuracy. The imple-
mentation and the achieved accuracy values are presented in detail in 
Fig. 3. 

In addition, Table 4 documents the reliability of the proposed alpha- 
index. We also observe that NLR that has the greatest value of the alpha- 
index achieving significant prediction level which increases as other 
laboratory indices are added such as LDH that has the second greatest 
value of the alpha-index. The prediction level continues to increase as 
other laboratory indices are included with respect to their ranking per 
alpha-index. 

Fig. 4 presents the architecture of the best ANN model including the 
whole of the parameters of this, required for its design. 

In an effort to better understand the role of additional indices, we 
also performed a correlation analysis of the critical five laboratory 
indices with respect to the remaining 20 laboratory indices. The results 
of this calculation that corresponds to the Pearson correlation coefficient 
are presented at Table 5. Specifically, in this table the values in blue 
correspond to correlation coefficient greater than 0.30, with p- 
value<0.001. 

We observed that the 5 laboratory indices determined to be critical 
are in significant association with 9 other laboratory indices. 
Specifically,  

• Neutrophil-to-lymphocyte ratio (NLR) has a strong correlation with 
the Neutrophil count per volume (Neut), the Lymphocyte count per 
volume (Lympo), the Immature Granulocyte count per volume (IG), 
the IG-to-lymphocyte ratio (IGLR) and the C-reactive protein (CRP),  

• Lactate Dehydrogenase (LDH) is strongly correlated with Ferritin 
and Total bilirubin (Tbil),  

• Fibrinogen (Fib) has a strong relation with Neutrophil count per 
volume (Neut) and C-reactive protein (CRP),  

• Albumin (Alb) has a strong relation with White Blood Cell count per 
volume (WBC), Neutrophil count per volume (Neut), Immature 
Granulocyte count per volume (IG), the IG-to-lymphocyte ratio 
(IGLR), Hemoglobin concentration (Hb) and the Calcium (serum) 
(Ca + 2). 

4. Discussion 

Our study reveals for the first time 5 easily accessible laboratory 
markers of high importance for predicting COVID-19 severity, that were 
assessed through a novel alpha-index. Ranking these markers by 
importance and utilizing a training, validation, and testing dataset, we 
develop an ANN that can be used in clinical practice to accurately pre-
dict ICU hospitalization in COVID-19 early in the hospital course. 
Importantly, we also describe associations between laboratory indices 
that may better delineate several pathophysiological processes in 
COVID-19. 

So far, risk prediction models for severe COVID-19 are rare and 
limited by several factors. An existing model widely used to identify 

Table 4 
Performance indices of the 10 developed Artificial Neural models. The number of models declare the number of hematological indices used as input parameters for the 
prediction of COVID-19 Patients outcome.  

Model Hematological Indices Performance Indices 

CRP IGLR WBC Neut Ca + 2 D-Dimers Alb Fib LDH NLR Accuracy Sensitivity or Recall F1 − Score 

1          • 50.00 50.00 66.67 
2         • • 79.03 79.03 88.29 
3        • • • 87.10 87.10 93.10 
4       • • • • 91.94 91.94 95.80 
5      • • • • • 93.55 93.55 96.67 
6     • • • • • • 90.32 90.32 94.92 
7    • • • • • • • 91.94 91.94 95.80 
8   • • • • • • • • 88.71 88.71 94.02 
9  • • • • • • • • • 88.71 88.71 94.02 
10 • • • • • • • • • • 90.32 90.32 94.92  

Training Training Training Training Test1 92.34

Training Training Training Test Training2 95.97

Training Training Test Training Training3 92.34

Training Test Training Training Training4 89.92

Test Training Training Training Training5 90.73

Iteration Accuracy (%)

nae
M

=
 

2
9

.
6

2

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fig. 3. Implementation of 5-fold cross validation based on accuracy index.  
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deteriorating hospitalized patients in the United Kingdom (UK), Na-
tional Early Warning Score 2 (NEWS2), has shown a low positive pre-
dictive value (PPV) 0.53 (0.47–0.59), but good negative predictive value 
(NPV) 0.96 (0.90–1.00)to identify inpatient COVID-19 deterioration 
[26]. Only the NPV of NEWS2 monitoring was higher than that of other 
earlier scores including Modified Early Warning Score (MEWS) and 
Sepsis Related Organ Failure Assessment (qSOFA) score. Another pre-
diction model using demographics, comorbidities and laboratory tests at 
the initial presentation yielded moderate but significant accuracy with 
an area under the curve of 0.74 for ICU hospitalization. Machine 
learning models have tried to improve predictive values. Some models 
have focused only on mortality in the ICU or days of ICU hospitalization 
[27–30]. 

However, early prediction of ICU hospitalization is equally or even 
more important for the healthcare systems worldwide. In this context, 
machine learning was used to predict progression to a score ≥ 5 (WHO 
Clinical Progression Scale) before patients required mechanical venti-
lation. Strongest predictors of clinical deterioration were arterial blood 
oxygen partial pressure, followed by age, procalcitonin, LDH, CRP and 
alterations in blood count and coagulation. In the validation set, the 
CatBoost AUROC was 0.79, AUPRC 0.21 and Hosmer–Lemeshow test 
statistic 0.36 [31]. As a result, our ANN prediction model has several 
strengths not only because it utilizes early and routine laboratory values 
but also because it has very high accuracy. 

It is also noteworthy that several publications have aimed to deter-
mine the most critical laboratory indices for ICU admission. Some of 
these studies suggest laboratory indices that are included in the five 

laboratory indices proposed in the present study as critical. In particular, 
our machine learning approach confirms the predictive value of NLR 
which has been previously associated with severe COVID-19 [32–34]. 
Before COVID-19, NLR had already generated a lot of interest as a sys-
temic inflammatory index and a potential prognostic factor in many 
clinical conditions [35].In COVID-19, its role has been highlighted by 
meta-analyses showing an association of NLR with morbidity and mor-
tality of COVID-19 [36–38]. Our approach however clarifies that only 
one marker is not enough to maximize the predictive value. Except for 
NLR, our model has identified LDH, fibrinogen and d-dimers as addi-
tional critical markers, which are known indicators of severe infections. 
Their role has been also confirmed in COVID-19, but still as single 
markers associated with severe COVID-19 [39–41]. Other hematological 
markers, such as erythrocyte dynamics and platelets, that have not 
shown critical predictive value in our model, may be also important for 
the diagnostic approach in severe COVID-19 [42,43]. Their role needs to 
be further refined. 

Interestingly, our approach has documented that albumin is also an 
important prognostic marker. Although hypoalbuminemia has been 
largely under-studied in COVID-19 a few reports have indicated its as-
sociation with disease severity, even independently of age and comor-
bidities [44–46]. Albumin may be a surrogate marker of the patient’s 
status at admission (cachexia, drug-binding proteins). Our study also 
shows inter-correlation between these entities that may better delineate 
several pathophysiological processes in COVID-19. The strong associa-
tion that we observed between albumin and calcium is well established 
from the pathophysiological point of view and explains why the addition 
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of calcium in the model does not strengthen the alpha-index.Several 
underlying mechanisms may be implicated in the correlation of albu-
min with COVID-19 outcomes. Firstly, endothelial dysfunction is a 
common denominator in severe COVID-19 [47]. The process of endo-
thelial dysfunction leads to loss of integrity of the epithelial–endothelial 
damage, contributing to hypoalbuminemia [48]. Secondly, neutrophil 
extracellular traps (NETs) are also major mediators in COVID-19 [49]. 
Since albumin inhibits NETs formation, patients with hypoalbuminemia 
may have a greater risk of morbidity and mortality. Additionally, al-
bumin is essential for balancing hemodynamics and reducing D-dimers, 
suggesting that hypoalbuminemia is associated with a pro-coagulant 
phenotype [50]. 

Our study has some limitations. Despite the prospective patient 
recruitment, our findings cannot be considered as definitive, indicating 
the need for future studies Introduction of additional prognostic factors 
such as imaging might have improved the predictive accuract of our 
model. Nevertheless, our aim was to propose a model with a small 
number of easily accessible laboratory indices that could be useful in all 
settings. Furthermore, the suggested ANN needs to be further validated 
in larger real-world cohorts from different hospitals and patient pop-
ulations. Although vaccination and different SARS-COV2 strains are not 
expected to directly influence our model, it should be noted that our 
patient population is homogeneous including only unvaccinated pa-
tients from the first two waves and alpha to delta variants in Greece. 

In conclusion, only 5 routine and easily accessible laboratory indices 
were able to predict ICU hospitalizations in COVID-19 patients utilizing 
a novel approach of artificial intelligence based on our preliminary 
findings Additional data are needed to ensure the validity of our data-
base and further studies are ongoing. Given that vaccinations and viral 
mutations are constantly change the landscape of COVID-19, a predic-
tion tool based on such robust variables is of high importance. Such 
models could help not only to reduce cost of hospitalization, morbidity 
and mortality, but also to accurately predict patients at high-risk that 
would benefit from prophylactic or pre-emptive treatments. Lastly, this 
artificial intelligence approach paves the way for future applications of 

this novel methodology in other clinical entities, since the newly pro-
posed alpha-index may be extremely useful in a plethora of diseases or 
other entities with classification problems [51–53]. 
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