24 research outputs found

    Curating Virtual Data Collections

    Get PDF
    NASAs Earth Observing System Data and Information System (EOSDIS) contains a rich set of datasets and related services throughout its many elements. As a result, locating all the EOSDIS data and related resources relevant to particular science theme can be daunting. This is largely because EOSDIS data's organizing principle is affected more by the way they are produced than around the expected end use. Virtual collections oriented around science themes can overcome this by presenting collections of data and related resources that are organized around the user's interest, not around the way the data were produced. Virtual collections consist of annotated web addresses (URLs) that point to data and related resource addresses, thus avoiding the need to copy all of the relevant data to a single place. These URL addresses can be consumed by a variety of clients, ranging from basic URL downloaders (wget, curl) and web browsers to sophisticated data analysis programs such as the Integrated Data Viewer

    Integrated Management and Visualization of Electronic Tag Data with Tagbase

    Get PDF
    Electronic tags have been used widely for more than a decade in studies of diverse marine species. However, despite significant investment in tagging programs and hardware, data management aspects have received insufficient attention, leaving researchers without a comprehensive toolset to manage their data easily. The growing volume of these data holdings, the large diversity of tag types and data formats, and the general lack of data management resources are not only complicating integration and synthesis of electronic tagging data in support of resource management applications but potentially threatening the integrity and longer-term access to these valuable datasets. To address this critical gap, Tagbase has been developed as a well-rounded, yet accessible data management solution for electronic tagging applications. It is based on a unified relational model that accommodates a suite of manufacturer tag data formats in addition to deployment metadata and reprocessed geopositions. Tagbase includes an integrated set of tools for importing tag datasets into the system effortlessly, and provides reporting utilities to interactively view standard outputs in graphical and tabular form. Data from the system can also be easily exported or dynamically coupled to GIS and other analysis packages. Tagbase is scalable and has been ported to a range of database management systems to support the needs of the tagging community, from individual investigators to large scale tagging programs. Tagbase represents a mature initiative with users at several institutions involved in marine electronic tagging research

    Saildrone: adaptively sampling the marine environment

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(6), (2020): E744-E762, doi:10.1175/BAMS-D-19-0015.1.From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.The Saildrone data collection mission was sponsored by the Saildrone Award, an annual data collection mission awarded by Saildrone Inc., and the Schmidt Family Foundation. The research was funded by the NASA Physical Oceanography Program Grant 80NSSC18K0837 and 80NSSC18K1441. The work by T. M. Chin, J. Vazquez-Cuerzo, and V. Tsontos was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Piero L.F. Mazzini was supported by California Sea Grant Award NA18OAR4170073. We thank CeNCOOS for providing the HF radar data in the Gulf of the Farallones. Jose Gomez-Valdes was supported by CONACYT Grant 257125, and by CICESE. Work by Joel Scott and Ivona Cetinic was supported through NASA PACE. The work by Lisan Yu was supported by NOAA Ocean Observing and Monitoring Division under Grant NA14OAR4320158

    Satellite Altimetry for Ocean and Coastal Applications: A Review

    No full text
    More than 30 years of observations from an international suite of satellite altimeter missions continue to provide key data enabling research discoveries and a broad spectrum of operational and user-driven applications. These missions were designed to advance technologies and to answer scientific questions about ocean circulation, ocean heat content, and the impact of climate change on these Earth systems. They are also a valuable resource for the operational needs of oceanographic and weather forecasting agencies that provide information to shipping and fishing vessels and offshore operations for route optimization and safety, as well as for other decision makers in coastal, water resources, and disaster management fields. This time series of precise measurements of ocean surface topography (OST)—the “hills and valleys” of the ocean surface—reveals changes in ocean dynamic topography, tracks sea level variations at global to regional scales, and provides key information about ocean trends reflecting climate change in our warming world. Advancing technologies in new satellite systems allows measurements at higher spatial resolution ever closer to coastlines, where the impacts of storms, waves, and sea level rise on coastal communities and infrastructure are manifest. We review some collaborative efforts of international space agencies, including NASA, CNES, NOAA, ESA, and EUMETSAT, which have contributed to a collection of use cases of satellite altimetry in operational and decision-support contexts. The extended time series of ocean surface topography measurements obtained from these satellite altimeter missions, along with advances in satellite technology that have allowed for higher resolution measurements nearer to coasts, has enabled a range of such applications. The resulting body of knowledge and data enables better assessments of storms, waves, and sea level rise impacts on coastal communities and infrastructure amongst other key contributions for societal benefit. Although not exhaustive, this review provides a broad overview with specific examples of the important role of satellite altimetry in ocean and coastal applications, thus justifying the significant resource contributions made by international space agencies in the development of these missions

    Cloud-based Matchup System (CDMS) API User's Guide

    No full text
    User guide documentation to the Cloud-based Matchup Service (CDMS) API.</p

    Rapid visualization of tag data in Tagbase.

    No full text
    <p>Tagbase forms provide a user-friendly interface for rapidly sub-setting data via interactive controls to produce standard reports as both tabular and graphical outputs. Controls at the top of the form allow selection of source data from single or multiple tags or dates. Wildlife Computers PAT time-at-depth series (bubble plots) and PDT time series (line plots) are shown here.</p

    Supported output formats of Tagbase.

    No full text
    <p>Supported output formats of Tagbase.</p

    Free utilities and plug-ins used in Tagbase.

    No full text
    <p>Free utilities and plug-ins used in Tagbase.</p

    Entity-Relationship diagram summarizing the Tagbase relational data model.

    No full text
    <p>Tables, composed of thematically and structurally distinct sets of information, appear as boxes with descriptive table name headers and a list of constituent fields. Relationships between tables in this information hierarchy are shown as lines linking primary and foreign key fields in adjacent tables. One-to-one relationships are illustrated as single terminal lines (−). One-to-many relationships between key fields are represented as double ( = ) and single lines on each terminus, linking multiple records in the child table to single rows in the parent table respectively.</p
    corecore