74 research outputs found

    Prognostic factors, disease course, and treatment efficacy in Duchenne muscular dystrophy: A systematic review and meta‐analysis

    Full text link
    Introduction/Aims: Prognostic factors in Duchenne muscular dystrophy (DMD) predict the disease course and may help individualize patient care. The aim was to summarize the evidence on prognostic factors that may support treatment decisions. Methods: We searched six databases for prospective studies that each included ≥50 DMD patients with a minimum follow-up of 1 y. Primary outcomes were age at loss of ambulation (LoA), pulmonary function (forced vital capacity percent of predicted, FVC%p), and heart failure. Results: Out of 5074 references, 59 studies were analyzed. Corticosteroid use was associated with a delayed LoA (pooled effect hazard ratio [HR] 0.42, 95% confidence interval [CI] 0.23–0.75, I2 94%), better pulmonary function tests (higher peak FVC%, prolonged time with FVC%p > 50%, and reduced need for assisted ventilation) and delayed cardiomyopathy. Longer corticosteroid treatment was associated with later LoA (>1 y compared to <1 y; pooled HR: 0.50, 95% CI 0.27–0.90) and early treatment start (aged <5 y) may be associated with early cardiomyopathy and higher fracture risk. Genotype appeared to be an independent driver of LoA in some studies. Higher baseline physical function tests (e.g., 6-minute walk test) were associated with delayed LoA. Left ventricular dysfunction and FVC <1 L increased and the use of angiotensin-converting enzyme (ACE) inhibitors reduced the risk of heart failure and death. Fusion surgery in scoliosis may potentially preserve pulmonary function. Discussion: Prognostic factors that may inform clinical decisions include age at corticosteroid treatment initiation and treatment duration, ACE-inhibitor use, baseline physical function tests, pulmonary function, and cardiac dysfunction

    Mechanisms of Improved Exercise Performance under Hyperoxia

    Full text link
    BACKGROUND The impact of hyperoxia on exercise limitation is still incompletely understood. OBJECTIVES We investigated to which extent breathing hyperoxia enhances the exercise performance of healthy subjects and which physiologic mechanisms are involved. METHODS A total of 32 healthy volunteers (43 ± 15 years, 12 women) performed 4 bicycle exercise tests to exhaustion with ramp and constant-load protocols (at 75% of the maximal workload [Wmax] on FiO2 0.21) on separate occasions while breathing ambient (FiO2 0.21) or oxygen-enriched air (FiO2 0.50) in a random, blinded order. Workload, endurance, gas exchange, pulse oximetry (SpO2), and cerebral (CTO) and quadriceps muscle tissue oxygenation (QMTO) were measured. RESULTS During the final 15 s of ramp exercising with FiO2 0.50, Wmax (mean ± SD 270 ± 80 W), SpO2 (99 ± 1%), and CTO (67 ± 9%) were higher and the Borg CR10 Scale dyspnea score was lower (4.8 ± 2.2) than the corresponding values with FiO2 0.21 (Wmax 257 ± 76 W, SpO2 96 ± 3%, CTO 61 ± 9%, and Borg CR10 Scale dyspnea score 5.7 ± 2.6, p < 0.05, all comparisons). In constant-load exercising with FiO2 0.50, endurance was longer than with FiO2 0.21 (16 min 22 s ± 7 min 39 s vs. 10 min 47 s ± 5 min 58 s). With FiO2 0.50, SpO2 (99 ± 0%) and QMTO (69 ± 8%) were higher than the corresponding isotime values to end-exercise with FiO2 0.21 (SpO2 96 ± 4%, QMTO 66 ± 9%), while minute ventilation was lower in hyperoxia (82 ± 18 vs. 93 ± 23 L/min, p < 0.05, all comparisons). CONCLUSION In healthy subjects, hyperoxia increased maximal power output and endurance. It improved arterial, cerebral, and muscle tissue oxygenation, while minute ventilation and dyspnea perception were reduced. The findings suggest that hyperoxia enhanced cycling performance through a more efficient pulmonary gas exchange and a greater availability of oxygen to muscles and the brain (cerebral motor and sensory neurons)

    Patients with obstructive sleep apnea at altitude

    Full text link
    Bloch, Konrad E., Tsogyal D. Latshang, and Silvia Ulrich. Patients with obstructive sleep apnea at altitude. High Alt Med Biol 16:110-116, 2015.--Obstructive sleep apnea (OSA) is highly prevalent in the general population, in particular in men and women of older age. In OSA patients sleeping near sea level, the apneas/hypopneas associated with intermittent hypoxemia are predominantly due to upper airway collapse. When OSA patients stay at altitudes above 1600 m, corresponding to that of many tourist destinations, hypobaric hypoxia promotes frequent central apneas in addition to obstructive events, resulting in combined intermittent and sustained hypoxia. This induces strong sympathetic activation with elevated heart rate, cardiac arrhythmia, and systemic hypertension. There are concerns that these changes expose susceptible OSA patients, in particular those with advanced age and co-morbidities, to an excessive risk of cardiovascular and other adverse events during a stay at altitude. Based on data from randomized trials, it seems advisable for OSA patients to use continuous positive airway pressure treatment with computer controlled mask pressure adjustment (autoCPAP) in combination with acetazolamide during an altitude sojourn. If CPAP therapy is not feasible, acetazolamide alone is better than no treatment at all, as it improves oxygenation and sleep apnea and prevents excessive blood pressure rises of OSA patients at altitude

    How to treat patients with obstructive sleep apnea syndrome during an altitude sojourn

    Full text link
    Considering the high prevalence of the obstructive sleep apnea syndrome (OSA), it is expected that many patients with the disorder are traveling to altitude. However, this may expose them to the risk of pronounced hypoxemia, exacerbation of nocturnal breathing disturbances by frequent central apneas, impaired daytime performance, and high blood pressure. Recently, randomized studies specifically investigated the effects of altitude (1630-2590 m) in OSA patients and the optimal treatment in this setting. The results indicate that patients should continue to use continuous positive airway pressure therapy (CPAP) when sleeping at altitude. Since CPAP alone does not control central sleep apnea emerging at altitude, combined treatment with acetazolamide and CPAP should be considered, in particular, in patients with severe OSA and co-morbidities. Supplemental oxygen combined with CPAP might be advantageous in patients with OSA and concomitant cardiopulmonary disease by preventing hypoxemia and central sleep apnea. In patients unable to use CPAP or if electrical power is not available, an optimally fitted mandibular advancement device might be an alternative treatment option that can be combined with acetazolamide during altitude sojourns. Acetazolamide alone is also beneficial and better than no treatment at all, since it improves oxygen saturation, breathing disturbances, and the excessive blood pressure elevation in OSA patients traveling to altitude

    Sleep at high altitude: guesses and facts

    Full text link
    Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8-4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiorespiratory disease

    Prognostic factors, disease course and treatment efficacy in Duchenne muscular dystrophy: A systematic review and meta-analysis.

    No full text
    INTRODUCTION/AIMS Prognostic factors in Duchenne muscular dystrophy (DMD) predict the disease course and may help individualize patient care. The aim was to summarize the evidence on prognostic factors that may support treatment decisions. METHODS We searched six databases for prospective studies that each included ≥50 DMD patients with a minimum follow-up of one year. Primary outcomes were age at loss of ambulation (LoA), pulmonary function (forced vital capacity percent of predicted, FVC%p), and heart failure. RESULTS Out of 5074 references, 59 studies were analyzed. Corticosteroid use was associated with a delayed LoA (pooled effect HR 0.42, 95% CI 0.23 to 0.75, I2 94%), better pulmonary function tests (higher peak FVC%, prolonged time with FVC%p >50%, and reduced need for assisted ventilation) and delayed cardiomyopathy. Longer corticosteroid treatment was associated with later LoA (>1 year compared to <1 year; pooled HR: 0.50, 95% CI 0.27 to 0.90) and early treatment start (aged <5 years) may be associated with early cardiomyopathy and higher fracture risk. Genotype appeared to be an independent driver of LoA in some studies. Higher baseline physical function tests (e.g., 6-minute walk test) were associated with delayed LoA. Left ventricular dysfunction and FVC <1 liter increased and the use of angiotensin-converting enzyme (ACE) inhibitors reduced the risk of heart failure and death. Fusion surgery in scoliosis may potentially preserve pulmonary function. DISCUSSION Prognostic factors that may inform clinical decisions include age at corticosteroid treatment initiation and treatment duration, ACE-inhibitor use, baseline physical function tests, pulmonary function, and cardiac dysfunction. This article is protected by copyright. All rights reserved

    Severe metabolic acidosis in adult patients with Duchenne muscular dystrophy

    Full text link
    Duchenne muscular dystrophy (DMD) leads to progressive paresis, respiratory failure and premature death. Long-term positive pressure ventilation can improve quality of life and survival, but previously unrecognized complications may arise. We analyzed the characteristics of severe metabolic acidosis occurring in 8 of 55 DMD patients, of 20-36 years of age, observed over a 5-year period. All patients were on positive pressure ventilation and were being treated for chronic constipation. Before admission, they had had a reduced intake of fluids and food. Upon examination, they were severely ill, dyspneic and suffering from abdominal discomfort. Metabolic acidosis with a high anion gap was noted in 5 of the 8 patients and with a normal anion gap in the other 3. They all recovered after the administration of fluids and nutrition, the regulation of bowel movements and treatment with antibiotics, as appropriate. Metabolic acidosis is a life-threatening, potentially preventable complication in older DMD patients. Early recognition, subsequent administration of fluids, nutrition and antibiotics and regulation of bowel movements seem to be essential

    Blood pressure response to exposure to moderate altitude in patients with COPD

    Get PDF
    Purpose: Patients with COPD might be particularly susceptible to hypoxia-induced autonomic dysregulation. Decreased baroreflex sensitivity (BRS) and increased blood pressure (BP) variability (BPV) are markers of impaired cardiovascular autonomic regulation and there is evidence for an association between decreased BRS/increased BPV and high cardiovascular risk. The aim of this study was to evaluate the effect of short-term exposure to moderate altitude on BP and measures of cardiovascular autonomic regulation in COPD patients. Materials and methods: Continuous morning beat-to-beat BP was noninvasively measured with a Finometer® device for 10 minutes at low altitude (490 m, Zurich, Switzerland) and for 2 days at moderate altitude (2,590 m, Davos Jakobshorn, Switzerland) – the order of altitude exposure was randomized. Outcomes of interest were mean SBP and DBP, BPV expressed as the coefficient of variation (CV), and spontaneous BRS. Changes between low altitude and day 1 and day 2 at moderate altitude were assessed by ANOVA for repeated measurements with Fisher’s exact test analysis. Results: Thirty-seven patients with moderate to severe COPD (mean±SD age 64±6 years, FEV1 60%±17%) were included. Morning SBP increased by +10.8 mmHg (95% CI: 4.7–17.0, P=0.001) and morning DBP by +5.0 mmHg (95% CI: 0.8–9.3, P=0.02) in response to altitude exposure. BRS significantly decreased (P=0.03), whereas BPV significantly and progressively increased (P<0.001) upon exposure to altitude. Conclusion: Exposure of COPD patients to moderate altitude is associated with a clinically relevant increase in BP, which seems to be related to autonomic dysregulation. Clinical trial registration: ClinicalTrials.gov (NCT01875133)

    Gastrointestinal Dysfunction in Patients with Duchenne Muscular Dystrophy

    Full text link
    BACKGROUND In adult patients with Duchenne muscular dystrophy (DMD) life-threatening constipation has been reported. Since gastrointestinal function in DMD has not been rigorously studied we investigated objective and subjective manifestations of gastrointestinal disturbances in DMD patients. METHODS In 33 patients with DMD, age 12-41 years, eating behavior and gastrointestinal symptoms were evaluated by questionnaires. Gastric emptying half time (T1/2) and oro-cecal transit time (OCTT) were evaluated by analyzing 13CO2 exhalation curves after ingestion of 13C labeled test meals. Colonic transit time (CTT) was measured by abdominal radiography following ingestion of radiopaque markers. RESULTS The median (quartiles) T1/2 was 187 (168, 220) minutes, the OCTT was 6.3 (5.0, 7.9) hours, both substantially longer than normal data (Goetze 2005, T1/2: 107±10; Geypens 1999, OCTT 4.3±0.1 hours). The median CTT was 60 (48, 82) hours despite extensive use of laxative measures (Meier 1995, upper limit of normal: 60 hours). T1/2 and OCTT did not correlate with symptoms evaluated by the Gastroparesis Cardinal Symptom Index (GCSI) (Spearman r = -0.3, p = 0.1; and r = -0.15, p = 0.4, respectively). CTT was not correlated with symptoms of constipation assessed by ROME III criteria (r = 0.12, p = 0.5). CONCLUSIONS DMD patients have a markedly disturbed gastrointestinal motor function. Since objective measures of impaired gastrointestinal transport are not correlated with symptoms of gastroparesis or constipation our findings suggest that measures assuring adequate intestinal transport should be taken independent of the patient's perception in order to prevent potentially life threatening constipation, particularly in older DMD patients

    Effect of nocturnal oxygen therapy on exercise performance of COPD patients at 2048 m: data from a randomized clinical trial

    Full text link
    This trial evaluates whether nocturnal oxygen therapy (NOT) during a stay at 2048 m improves altitude-induced exercise intolerance in lowlanders with chronic obstructive pulmonary disease (COPD). 32 lowlanders with moderate to severe COPD, mean ± SD forced expiratory volume in the first second of expiration (FEV1) 54 ± 13% predicted, stayed for 2 days at 2048 m twice, once with NOT, once with placebo according to a randomized, crossover trial with a 2-week washout period at < 800 m in-between. Semi-supine, constant-load cycle exercise to exhaustion at 60% of maximal work-rate was performed at 490 m and after the first night at 2048 m. Endurance time was the primary outcome. Additional outcomes were cerebral tissue oxygenation (CTO), arterial blood gases and breath-by-breath measurements (http://www.ClinicalTrials.gov NCT02150590). Mean ± SE endurance time at 490 m was 602 ± 65 s, at 2048 m after placebo 345 ± 62 s and at 2048 m after NOT 293 ± 60 s, respectively (P < 0.001 vs. 490 m). Mean difference (95%CI) NOT versus placebo was − 52 s (− 174 to 70), P = 0.401. End-exercise pulse oximetry (SpO2), CTO and minute ventilation (V˙E) at 490 m were: SpO2 92 ± 1%, CTO 65 ± 1%, V˙E 37.7 ± 2.0 L/min; at 2048 m with placebo: SpO2 85 ± 1%, CTO 61 ± 1%, V˙E 40.6 ± 2.0 L/min and with NOT: SpO2 84 ± 1%; CTO 61 ± 1%; V˙E 40.6 ± 2.0 L/min (P < 0.05, SpO2, CTO at 2048 m with placebo vs. 490 m; P = NS, NOT vs. placebo). Altitude-related hypoxemia and cerebral hypoxia impaired exercise endurance in patients with moderate to severe COPD and were not prevented by NOT
    corecore