29 research outputs found

    Effect of strikes by health workers on mortality between 2010 and 2016 in Kilifi, Kenya: a population-based cohort analysis.

    Get PDF
    BACKGROUND: Health workers' strikes are a global occurrence. Kenya has had several strikes by health workers in recent years but their effect on mortality is unknown. We assessed the effect on mortality of six strikes by health workers that occurred from 2010 to 2016 in Kilifi, Kenya. METHODS: Using daily mortality data obtained from the Kilifi Health and Demographic Surveillance System, we fitted a negative binomial regression model to estimate the change in mortality during strike periods and in the 2 weeks immediately after strikes. We did subgroup analyses by age, cause of death, and strike week. FINDINGS: Between Jan 1, 2010, and Nov 30, 2016, we recorded 1 829 929 person-years of observation, 6396 deaths, and 128 strike days (median duration of strikes, 18·5 days [range 9-42]). In the primary analysis, no change in all-cause mortality was noted during strike periods (adjusted rate ratio [RR] 0·93, 95% CI 0·81-1·08; p=0·34). Weak evidence was recorded of variation in mortality rates by age group, with an apparent decrease among infants aged 1-11 months (adjusted RR 0·58, 95% CI 0·33-1·03; p=0·064) and an increase among children aged 12-59 months (1·75, 1·11-2·76; p=0·016). No change was noted in mortality rates in post-strike periods and for any category of cause of death. INTERPRETATION: The brief strikes by health workers during the period 2010-16 were not associated with obvious changes in overall mortality in Kilifi. The combined effects of private (and some public) health care during strike periods, a high proportion of out-of-hospital deaths, and a low number of events might have led us to underestimate the effect. FUNDING: Wellcome Trust and MRC Tropical Epidemiology Group

    Burden of disease in adults admitted to hospital in a rural region of coastal Kenya: an analysis of data from linked clinical and demographic surveillance systems

    Get PDF
    Background Estimates of the burden of disease in adults in sub-Saharan Africa largely rely on models of sparse data. We aimed to measure the burden of disease in adults living in a rural area of coastal Kenya with use of linked clinical and demographic surveillance data. Methods We used data from 18 712 adults admitted to Kilifi District Hospital (Kilifi , Kenya) between Jan 1, 2007, and Dec 31, 2012, linked to 790 635 person-years of observation within the Kilifi Health and Demographic Surveillance System, to establish the rates and major causes of admission to hospital. These data were also used to model diseasespecifi c disability-adjusted life-years lost in the population. We used geographical mapping software to calculate admission rates stratifi ed by distance from the hospital. Findings The main causes of admission to hospital in women living within 5 km of the hospital were infectious and parasitic diseases (303 per 100 000 person-years of observation), pregnancy-related disorders (239 per 100 000 personyears of observation), and circulatory illnesses (105 per 100 000 person-years of observation). Leading causes of hospital admission in men living within 5 km of the hospital were infectious and parasitic diseases (169 per 100 000 personyears of observation), injuries (135 per 100 000 person-years of observation), and digestive system disorders (112 per 100 000 person-years of observation). HIV-related diseases were the leading cause of disability-adjusted lifeyears lost (2050 per 100 000 person-years of observation), followed by non-communicable diseases (741 per 100 000 personyears of observation). For every 5 km increase in distance from the hospital, all-cause admission rates decreased by 11% (95% CI 7–14) in men and 20% (17–23) in women. The magnitude of this decline was highest for endocrine disorders in women (35%; 95% CI 22–46) and neoplasms in men (30%; 9–45). Interpretation Adults in rural Kenya face a combined burden of infectious diseases, pregnancy-related disorders, cardiovascular illnesses, and injuries. Disease burden estimates based on hospital data are aff ected by distance from the hospital, and the amount of underestimation of disease burden diff ers by both disease and sex

    Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors.

    Get PDF
    The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Africa is poorly described. The first case of SARS-CoV-2 in Kenya was reported on 12 March 2020, and an overwhelming number of cases and deaths were expected, but by 31 July 2020, there were only 20,636 cases and 341 deaths. However, the extent of SARS-CoV-2 exposure in the community remains unknown. We determined the prevalence of anti-SARS-CoV-2 immunoglobulin G among blood donors in Kenya in April-June 2020. Crude seroprevalence was 5.6% (174 of 3098). Population-weighted, test-performance-adjusted national seroprevalence was 4.3% (95% confidence interval, 2.9 to 5.8%) and was highest in urban counties Mombasa (8.0%), Nairobi (7.3%), and Kisumu (5.5%). SARS-CoV-2 exposure is more extensive than indicated by case-based surveillance, and these results will help guide the pandemic response in Kenya and across Africa

    Validating physician-certified verbal autopsy and probabilistic modeling (InterVA) approaches to verbal autopsy interpretation using hospital causes of adult deaths

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common method for determining cause of death is certification by physicians based either on available medical records, or where such data are not available, through verbal autopsy (VA). The physician-certification approach is costly and inconvenient; however, recent work shows the potential of a computer-based probabilistic model (InterVA) to interpret verbal autopsy data in a more convenient, consistent, and rapid way. In this study we validate separately both physician-certified verbal autopsy (PCVA) and the InterVA probabilistic model against hospital cause of death (HCOD) in adults dying in a district hospital on the coast of Kenya.</p> <p>Methods</p> <p>Between March 2007 and June 2010, VA interviews were conducted for 145 adult deaths that occurred at Kilifi District Hospital. The VA data were reviewed by a physician and the cause of death established. A range of indicators (including age, gender, physical signs and symptoms, pregnancy status, medical history, and the circumstances of death) from the VA forms were included in the InterVA for interpretation. Cause-specific mortality fractions (CSMF), Cohen's kappa (κ) statistic, receiver operating characteristic (ROC) curves, sensitivity, specificity, and positive predictive values were applied to compare agreement between PCVA, InterVA, and HCOD.</p> <p>Results</p> <p>HCOD, InterVA, and PCVA yielded the same top five underlying causes of adult deaths. The InterVA overestimated tuberculosis as a cause of death compared to the HCOD. On the other hand, PCVA overestimated diabetes. Overall, CSMF for the five major cause groups by the InterVA, PCVA, and HCOD were 70%, 65%, and 60%, respectively. PCVA versus HCOD yielded a higher kappa value (κ = 0.52, 95% confidence interval [CI]: 0.48, 0.54) than the InterVA versus HCOD which yielded a kappa (κ) value of 0.32 (95% CI: 0.30, 0.38). Overall, (κ) agreement across the three methods was 0.41 (95% CI: 0.37, 0.48). The areas under the ROC curves were 0.82 for InterVA and 0.88 for PCVA. The observed sensitivities and specificities across the five major causes of death varied from 43% to 100% and 87% to 99%, respectively, for the InterVA/PCVA against the HCOD.</p> <p>Conclusion</p> <p>Both the InterVA and PCVA compared well with the HCOD at a population level and determined the top five underlying causes of death in the rural community of Kilifi. We hope that our study, albeit small, provides new and useful data that will stimulate further definitive work on methods of interpreting VA data.</p

    Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe.

    Get PDF
    BACKGROUND: The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS: We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS: No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS: In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.)

    Revealing the extent of the first wave of the COVID-19 pandemic in Kenya based on serological and PCR-test data.

    Get PDF
    Policymakers in Africa need robust estimates of the current and future spread of SARS-CoV-2. We used national surveillance PCR test, serological survey and mobility data to develop and fit a county-specific transmission model for Kenya up to the end of September 2020, which encompasses the first wave of SARS-CoV-2 transmission in the country. We estimate that the first wave of the SARS-CoV-2 pandemic peaked before the end of July 2020 in the major urban counties, with 30-50% of residents infected. Our analysis suggests, first, that the reported low COVID-19 disease burden in Kenya cannot be explained solely by limited spread of the virus, and second, that a 30-50% attack rate was not sufficient to avoid a further wave of transmission

    Revealing the extent of the first wave of the COVID-19 pandemic in Kenya based on serological and PCR-test data

    Get PDF
    Policymakers in Africa need robust estimates of the current and future spread of SARS-CoV-2. We used national surveillance PCR test, serological survey and mobility data to develop and fit a county-specific transmission model for Kenya up to the end of September 2020, which encompasses the first wave of SARS-CoV-2 transmission in the country. We estimate that the first wave of the SARS-CoV-2 pandemic peaked before the end of July 2020 in the major urban counties, with 30-50% of residents infected. Our analysis suggests, first, that the reported low COVID-19 disease burden in Kenya cannot be explained solely by limited spread of the virus, and second, that a 30-50% attack rate was not sufficient to avoid a further wave of transmission.</ns4:p

    COVID-19 transmission dynamics underlying epidemic waves in Kenya

    Get PDF
    Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of SARS-CoV-2 transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or when infection spreads to susceptible sub-populations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model, we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of higher-transmissibility variants. Reopening schools led to a minor increase in transmission between the second and third waves. Socio-economic and urban/rural population structure are critical determinants of viral transmission in Kenya

    Temporal trends of SARS-CoV-2 seroprevalence during the first wave of the COVID-19 epidemic in Kenya.

    Get PDF
    Observed SARS-CoV-2 infections and deaths are low in tropical Africa raising questions about the extent of transmission. We measured SARS-CoV-2 IgG by ELISA in 9,922 blood donors across Kenya and adjusted for sampling bias and test performance. By 1st September 2020, 577 COVID-19 deaths were observed nationwide and seroprevalence was 9.1% (95%CI 7.6-10.8%). Seroprevalence in Nairobi was 22.7% (18.0-27.7%). Although most people remained susceptible, SARS-CoV-2 had spread widely in Kenya with apparently low associated mortality

    Transmission networks of SARS-CoV-2 in coastal Kenya during the first two waves : a retrospective genomic study

    Get PDF
    Background: Detailed understanding on SARS-CoV-2 regional transmission networks within sub-Saharan Africa is key for guiding local public health interventions against the pandemic. Methods: Here, we analysed 1,139 SARS-CoV-2 genomes from positive samples collected between March 2020 and February 2021 across six counties of Coastal Kenya (Mombasa, Kilifi, Taita Taveta, Kwale, Tana River and Lamu) to infer virus introductions and local transmission patterns during the first two waves of infections. Virus importations were inferred using ancestral state reconstruction and virus dispersal between counties were estimated using discrete phylogeographic analysis. Results: During Wave 1, 23 distinct Pango lineages were detected across the six counties, while during Wave 2, 29 lineages were detected; nine of which occurred in both waves, and four seemed to be Kenya specific (B.1.530, B.1.549, B.1.596.1 and N.8). Most of the sequenced infections belonged to lineage B.1 (n=723, 63%) which predominated in both Wave 1 (73%, followed by lineages N.8 (6%) and B.1.1 (6%)) and Wave 2 (56%, followed by lineages B.1.549 (21%) and B.1.530 (5%). Over the study period, we estimated 280 SARS-CoV-2 virus importations into Coastal Kenya. Mombasa City, a vital tourist and commercial centre for the region, was a major route for virus imports, most of which occurred during Wave 1, when many COVID-19 government restrictions were still in force. In Wave 2, inter-county transmission predominated, resulting in the emergence of local transmission chains and diversity. Conclusions: Our analysis supports moving COVID-19 control strategies in the region from a focus on international travel to strategies that will reduce local transmission
    corecore