59 research outputs found

    Outcomes of patients with advanced cancer and KRAS mutations in phase I clinical trials.

    Get PDF
    BackgroundKRAS mutation is common in human cancer. We assessed the clinical factors, including type of KRAS mutation and treatment, of patients with advanced cancer and tumor KRAS mutations and their association with treatment outcomes.MethodsPatients referred to the Phase I Clinic for treatment who underwent testing for KRAS mutations were analyzed.ResultsOf 1,781 patients, 365 (21%) had a KRAS mutation. The G12D mutation was the most common mutation (29%). PIK3CA mutations were found in 24% and 10% of patients with and without KRAS mutations (p<0.0001). Of 223 patients with a KRAS mutation who were evaluable for response, 56 were treated with a MEK inhibitor-containing therapy and 167 with other therapies. The clinical benefit (partial response and stable disease lasting ≥6 months) rates were 23% and 9%, respectively, for the MEK inhibitor versus other therapies (p=0.005). The median progression-free survival (PFS) was 3.3 and 2.2 months, respectively (p=0.09). The respective median overall survival was 8.4 and 7.0 months (p=0.38). Of 66 patients with a KRAS mutation and additional alterations, higher rates of clinical benefit (p=0.04), PFS (p=0.045), and overall survival (p=0.02) were noted in patients treated with MEK inhibitor-containing therapy (n=9) compared to those treated with targeted therapy matched to the additional alterations (n=24) or other therapy (n=33).ConclusionsMEK inhibitors in patients with KRAS-mutated advanced cancer were associated with higher clinical benefit rates compared to other therapies. Therapeutic strategies that include MEK inhibitors or novel agents combined with other targeted therapies or chemotherapy need further investigation

    BRAF v600E-Mutant Cancers Treated With Vemurafenib Alone or in Combination With Everolimus, Sorafenib, or Crizotinib or With Paclitaxel and Carboplatin (VEM-PLUS) Study

    Get PDF
    Combined BRAF + MEK inhibition is FDA approved for BRAF V600E-mutant solid tumors except for colorectal cancer. However, beyond MAPK mediated resistance several other mechanisms of resistance such as activation of CRAF, ARAF, MET, P13K/AKT/mTOR pathway exist among other complex pathways. In the VEM-PLUS study, we performed a pooled analysis of four phase one studies evaluating the safety and efficacy of vemurafenib monotherapy and vemurafenib combined with targeted therapies (sorafenib, crizotinib, or everolimus) or carboplatin plus paclitaxel in advanced solid tumors harboring BRAF V600 mutations. When vemurafenib monotherapy was compared with the combination regimens, no significant differences in OS or PFS durations were noted, except for inferior OS in the vemurafenib and paclitaxel and carboplatin trial (P = 0.011; HR, 2.4; 95% CI, 1.22-4.7) and in crossover patients (P = 0.0025; HR, 2.089; 95% CI, 1.2-3.4). Patients naïve to prior BRAF inhibitors had statistically significantly improved OS at 12.6 months compared to 10.4 months in the BRAF therapy refractory group (P = 0.024; HR, 1.69; 95% CI 1.07-2.68). The median PFS was statistically significant between both groups, with 7 months in the BRAF therapy naïve group compared to 4.7 months in the BRAF therapy refractory group (P = 0.016; HR, 1.80; 95% CI 1.11-2.91). The confirmed ORR in the vemurafenib monotherapy trial (28%) was higher than that in the combination trials. Our findings suggest that, compared with vemurafenib monotherapy, combinations of vemurafenib with cytotoxic chemotherapy or with RAF- or mTOR-targeting agents do not significantly extend the OS or PFS of patients who have solid tumors with BRAF V600E mutations. Gaining a better understanding of the molecular mechanisms of BRAF inhibitor resistance, balancing toxicity and efficacy with novel trial designs are warranted

    Challenges and Opportunities Associated With the MD Anderson IMPACT2 Randomized Study in Precision Oncology

    Get PDF
    We investigated the challenges of conducting IMPACT2, an ongoing randomized study that evaluates molecular testing and targeted therapy (ClinicalTrials.gov: NCT02152254). Patients with metastatic cancer underwent tumor profiling and were randomized between the two arms when eligibility criteria were met (Part A). In Part B, patients who declined randomization could choose the study arm. In Part A, 69 (21.8%) of 317 patients were randomized; 78.2% were not randomized because of non-targetable alterations (39.8%), unavailability of clinical trial (21.8%), other reasons (12.6%), or availability of US Food and Drug Administration (FDA)-approved drugs for the indication (4.1%). In Part B, 32 (20.4%) of 157 patients were offered randomization; 16 accepted and 16 selected their treatment arm; 79.0% were not randomized (patient\u27s/physician\u27s choice, 29.3%; treatment selection prior to genomic reports, 16.6%; worsening performance status/death, 12.7%; unavailability of clinical trials, 6.4%; other, 6.4%; non-targetable alterations, 5.7%; or availability of FDA-approved drugs for the indication, 1.9%). In conclusion, although randomized controlled trials have been considered the gold standard for drug development, the execution of randomized trials in precision oncology in the advanced metastatic setting is complicated. We encountered various challenges conducting the IMPACT2 study, a large precision oncology trial in patients with diverse solid tumor types. The adaptive design of IMPACT2 enables patient randomization despite the continual FDA approval of targeted therapies, the evolving tumor biomarker landscape, and the plethora of investigational drugs. Outcomes for randomized patients are awaited

    Common cardiovascular medications in cancer therapeutics

    No full text
    Cardiac glycosides, statins, β-blockers, angiotensin-I converting enzyme inhibitors (ACEIs), and angiotensin II type 1 receptor blockers (ARBs) are widely used cardiovascular medications with pleiotropic properties. Many of these medications have been investigated in other diseases, including cancer. Cardiac glycosides and statins have advanced to clinical trial testing in cancer therapeutics, with variable success. Early observations in breast cancer were consistent with a more benign histologic phenotype among women taking digitalis compared to their counterparts who did not receive cardiac glycosides. Cardiac glycosides can induce apoptosis in cancer cells through various mechanisms and sensitize them to the effects of antitumor therapy. By blocking the generation of prenyl units, statins impair prenylation, an important posttranslational modification of proteins whose function depends on membrane anchoring. Statins also impair protein folding and N-glycosylation and inhibit the upregulation of cholesterol synthesis associated with chemotherapy resistance. Stress and catecholamine release promote tumor growth and angiogenesis, effects that can be mitigated by β-blockers. Components of the renin-angiotensin-aldosterone system are expressed in various cancers and are involved in carcinogenesis and tumor progression. Angiotensin II has potent mitogenic and angiogenic properties that can be blocked with ACEIs and ARBs. Although it is unclear whether the promising preclinical activity of many cardiovascular medications has clinically meaningful implications beyond the benefit in cardiovascular morbidity and mortality, the prevention or improvement of prognosis of common malignancies with medications known to reduce cardiovascular morbidity and mortality is encouraging and deserves further clinical investigation

    Anti-Vascular Endothelial Growth Factor Therapies and Cardiovascular Toxicity: What Are the Important Clinical Markers to Target?

    No full text
    This review focuses on the potential cardiovascular toxicities associated with the use of bevacizumab, sunitinib, and sorafenib in order to increase awareness about these complications and to discuss their clinical significance and therapeutic interventions
    corecore