20 research outputs found

    Quantifying entanglement in two-mode Gaussian states

    Get PDF
    Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.Comment: 8 pages,3 figs; The original submission gave an analytical formula that was claimed to give the entanglement of formation for arbitrary two-mode Gaussian states - this was incorrect. The formula gives a lower bound of EoF which saturates for symmetric states and for states with balanced correlations, and is a good approximation for most other states. This error is corrected in the revised versio

    Quantifying entanglement of formation for two-mode Gaussian states: Analytical expressions for upper and lower bounds and numerical estimation of its exact value

    Get PDF
    Entanglement of formation quantifies the entanglement of a state in terms of the entropy of entanglement of the least entangled pure state needed to prepare it. An analytical expression for this measure exists only for special cases, and finding a closed formula for an arbitrary state still remains an open problem. In this work we focus on two-mode Gaussian states, and we derive narrow upper and lower bounds for the measure that get tight for several special cases. Further, we show that the problem of calculating the actual value of the entanglement of formation for arbitrary two-mode Gaussian states reduces to a trivial single parameter optimization process, and we provide an efficient algorithm for the numerical calculation of the measure.Comment: 5 pages, 2 figures In this third version a few typos of the first and second versions have been correcte

    Simulation of Gaussian channels via teleportation and error correction of Gaussian states

    Get PDF
    Gaussian channels are the typical way to model the decoherence introduced by the environment in continuous-variable quantum states. It is known that those channels can be simulated by a teleportation protocol using as a resource state either a maximally entangled state passing through the same channel, i.e., the Choi-state, or a state that is entangled at least as much as the Choi-state. Since the construction of the Choi-state requires infinite mean energy and entanglement, i.e. it is unphysical, we derive instead every physical state able to simulate a given channel through teleportation with finite resources, and we further find the optimal ones, i.e., the resource states that require the minimum energy and entanglement. We show that the optimal resource states are pure and equally entangled to the Choi-state as measured by the entanglement of formation. We also show that the same amount of entanglement is enough to simulate an equally decohering channel, while even more entanglement can simulate less decohering channels. We, finally, use that fact to generalize a previously known error correction protocol by making it able to correct noise coming not only from pure loss but from thermal loss channels as well.Comment: 12 pages, 8 figure

    Teleportation-based collective attacks in Gaussian quantum key distribution

    Get PDF
    In Gaussian quantum key distribution eavesdropping attacks are conventionally modeled through the universal entangling cloner scheme, which is based on the premise that the whole environment is under control of the adversary, i.e., the eavesdropper purifies the system. This assumption implies that the eavesdropper has either access to an identity (noiseless) channel or an infinite amount of entanglement in order to simulate such an identity channel. In this work we challenge the necessity of this assumption and we propose a teleportation-based eavesdropping attack, where the eavesdropper is not assumed to have access to the shared channel, that represents the unavoidable noise due to the environment. Under collective measurements, this attack reaches optimality in the limit of an infinite amount of entanglement, while for finite entanglement resources it outperforms the corresponding optimal individual attack. We also calculate the minimum amount of distributed entanglement that is necessary for this eavesdropping scheme, since we consider it as the operationally critical quantity capturing the limitations of a realistic attack. We conclude that the fact that an infinite amount of entanglement is required for an optimal collective eavesdropping attack signifies the robustness of Gaussian quantum key distribution

    Simulation of Open Quantum Systems via Low-Depth Convex Unitary Evolutions

    Full text link
    Simulating physical systems on quantum devices is one of the most promising applications of quantum technology. Current quantum approaches to simulating open quantum systems are still practically challenging on NISQ-era devices, because they typically require ancilla qubits and extensive controlled sequences. In this work, we propose a hybrid quantum-classical approach for simulating a class of open system dynamics called random-unitary channels. These channels naturally decompose into a series of convex unitary evolutions, which can then be efficiently sampled and run as independent circuits. The method does not require deep ancilla frameworks and thus can be implemented with lower noise costs. We implement simulations of open quantum systems up to dozens of qubits and with large channel rank.Comment: 6 pages, 5 figure

    Multipartite Gaussian Entanglement of Formation

    Get PDF
    Entanglement of formation is a fundamental measure that quantifies the entanglement of bipartite quantum states. This measure has recently been extended into multipartite states taking the name α\alpha-entanglement of formation. In this work, we follow an analogous multipartite extension for the Gaussian version of entanglement of formation, and focusing on the the finest partition of a multipartite Gaussian state we show this measure is fully additive and computable for 3-mode Gaussian states

    Maximum entanglement of formation for a two-mode Gaussian state over passive operations

    Get PDF
    We quantify the maximum amount of entanglement of formation (EoF) that can be achieved by continuous-variable states under passive operations, which we refer to as EoF-potential. Focusing, in particular, on two-mode Gaussian states we derive analytical expressions for the EoF-potential for specific classes of states. For more general states, we demonstrate that this quantity can be upper-bounded by the minimum amount of squeezing needed to synthesize the Gaussian modes, a quantity called squeezing of formation. Our work, thus, provides a new link between non-classicality of quantum states and the non-classicality of correlations.Comment: Revised versio

    Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources

    Full text link
    Upper bounds for private communication over quantum channels can be derived by adopting channel simulation, protocol stretching, and relative entropy of entanglement. All these ingredients have led to single-letter upper bounds to the secret key capacity which can be directly computed over suitable resource states. For bosonic Gaussian channels, the tightest upper bounds have been derived by employing teleportation simulation over asymptotic resource states, namely the asymptotic Choi matrices of these channels. In this work, we adopt a different approach. We show that teleporting over an analytical class of finite-energy resource states allows us to closely approximate the ultimate bounds for increasing energy, so as to provide increasingly tight upper bounds to the secret-key capacity of one-mode phase-insensitive Gaussian channels. We then show that an optimization over the same class of resource states can be used to bound the maximum secret key rates that are achievable in a finite number of channel uses.Comment: 10 pages, 5 figure

    On the equivalence between squeezing and entanglement potential for two-mode Gaussian states

    Full text link
    The maximum amount of entanglement achievable under passive transformations by continuous-variable states is called the entanglement potential. Recent work has demonstrated that the entanglement potential is upper-bounded by a simple function of the squeezing of formation, and that certain classes of two-mode Gaussian states can indeed saturate this bound, though saturability in the general case remains an open problem. In this study, we introduce a larger class of states that we prove saturates the bound, and we conjecture that all two-mode Gaussian states can be passively transformed into this class, meaning that for all two-mode Gaussian states, entanglement potential is equivalent to squeezing of formation. We provide an explicit algorithm for the passive transformations and perform extensive numerical testing of our claim, which seeks to unite the resource theories of two characteristic quantum properties of continuous-variable systems.Comment: 10 pages, 2 figure

    Optimal probes for continuous variable quantum illumination

    Full text link
    Quantum illumination is the task of determining the presence of an object in a noisy environment. We determine the optimal continuous variable states for quantum illumination in the limit of zero object reflectivity. We prove that the optimal single mode state is a coherent state, while the optimal two mode state is the two-mode squeezed-vacuum state. We find that these probes are not optimal at non-zero reflectivity, but remain near optimal. This demonstrates the viability of the continuous variable platform for an experimentally accessible, near optimal quantum illumination implementation.Comment: 7 pages, 3 figures
    corecore