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Entanglement of formation is a fundamental measure that quantifies the entanglement of bipartite quantum
states. This measure has recently been extended into multipartite states, taking the name a-entanglement of
formation. In this work we follow an analogous multipartite extension for the Gaussian version of entanglement
of formation, and focusing on the finest partition of a multipartite Gaussian state, we show that this measure is
fully additive and computable for three-mode Gaussian states.
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I. INTRODUCTION

Entanglement is a property of quantum mechanics that
allows correlations beyond the classical limit. As such, it
is considered a crucial resource that allows certain quantum
protocols to be more efficient than their classical counterpart
[1]. Several entanglement measures have been defined in the
literature [1,2]; however, in general the quantification of their
values is a challenging task.

Bipartite entanglement of formation (EoF) [3] is defined as
the least expected amount of bipartite entropy of entanglement
(EoE) required to create a state. In general, the quantification
of bipartite EoF involves a minimization over infinite degrees
of freedom, making it hard to compute [4]. Initial research
focused on simple systems such as the two-qubit system [5,6],
which led to analytical expressions for the measure.

An analogous measure, called Gaussian EoF (GEoF), fo-
cusing only on Gaussian states and operations, was defined by
Wolf et al. [7]. A few years later, this measure was proven to
be equal to EoF in the case of two-mode Gaussian states [8,9].
For these types of states, several efficient numerical meth-
ods and analytical expressions have been derived [7,10-12].
Recently, in Ref. [13], Szalay introduced a measure referred
to as a-EoF, which is the multipartite extension of bipartite
EoF. In this paper, we follow Wolf’s approach and apply the
notion of «-EoF onto the Gaussian regime. We show that
a-GEoF is a computable multipartite entanglement measure.
We utilize a special case of «-GEoF, which we refer to as the
total GEoF (TGEOoF), to quantify the total entanglement in a
three-mode Gaussian system, in the sense that it is the sum of
the entanglement of all internal partitions of the state.

Our paper is set out in the following way. In Sec. II, we
introduce the conventions adopted in this paper. In Sec. III we
review bipartite entanglement measures. In Sec. IV, we review
a-entanglement measures [13] and introduce a special subset,
referring to it as the TEoF. In Sec. V we apply «-entanglement
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measures to the Gaussian regime and prove TGEoF is fully ad-
ditive. In Sec. VI, we consider the tripartite case and compute
the TEoF for simple cases. We summarize and conclude our
results in Sec. VII.

II. PRELIMINARIES

A. Modes, partitions, and subsystems

In the discrete variable case, the smallest subsystems are
referred to as qudits (or qubits for two-level systems). In the
continuous variable case, the smallest subsystems are referred
to as modes. For simplicity, this paper will be utilizing the
terminology mode, but in this context it can be used inter-
changeably with qudits if we are not considering the case of
Gaussian states.

Let us consider an N-mode state p. The state of the nth
mode p, can be found via the partial trace over all other
modes:

Pn = Tryizn(P) . (D

0 can be split into M partitions, via assigning each mode into
one of the M partitions (where N > M). By doing this we
introduce M subsystems, denoted {s;, 57, ..., Spr}. This defines
the M partitioning, o = s1|s2|...|sp. Each subsystem s; is
defined as the reduced state, achieved through the partial trace
over all other subsystems, i.e.,

Ps, = Tryg,5,(D) - @)

B. von Neumann entropy

Before we get into the quantification of entanglement, we
need to first define a function that a broad family of entangle-
ment measures are based on, i.e., quantum entropy [14-16].
In particular, we focus on the von Neumann entropy, which
for a state p is defined as

S(p)=—Tr(pInp). 3)

S(p) is a basis-independent function, which vanishes for pure
states. Also, note that it is fully additive for noncorrelated
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states (although subadditive in general), i.e.,

S(ﬁj‘] ® Iz\)Sz) = S(bsl) + S(bsz)! (4)

and concave
S(Z pji),) > piShy). 5)
J J

C. Gaussian states

In the later part of this paper, we will be considering
quantum systems comprised of bosonic Gaussian modes,
a, [17-20]. These bosonic annihilation operators satisfy the
bosonic commutation relations [a,,, &jn] = &7, where § is the
Kronecker delta. For Gaussian states, the analysis of first and
second moments [18] is sufficient to characterize the Wigner
function of the state [21]. The first moment of an N-mode
Gaussian state is fully characterized by its 2N-dimensional
displacement vector, D. The second-order moment is de-
scribed by its 2N x 2N real symmetric covariance matrix
[22], 0. As a result, all Gaussian states can be written as ,?)6’ B

The ith element of the displacement vector is defined in the
following way:

D; = Tr(pR;) , (6)
where
EE(quvn-quN’ijls'n’ﬁN)T’ (7)

and we have defined §, = a, + & and p, = (a, — a,)/i. The
{i, i'}th element of the covariance matrix o is defined in the
following way:

o = 5(Tr{[p(RiRy + Ry R)T} — 2Tr(PR)Tr(PR;)) . (8)

II1. BIPARTITE ENTANGLEMENT MEASURES

A. Bipartite entropy of entanglement

EoE, Ej, |s,, 1s the typical way to quantify bipartite entangle-
ment in pure states, ¥ = |y)(y| [23]. This measure is given
by the von Neumann entropy of the reduced state:

Eq, 5, () = S[Tre, ()] )

As 1 is a pure state, EoE is invariant under exchange of sub-
systems, i.e., Eslm(l/}) = E,s, (1/;). This is a reliable bipartite
entanglement measure, as it satisfies the following postulates
[1,2]:

(1) Ej,s, is an indicator function for separability between
the subsystem s; and s;:

Eyy(§) =06 ¥ =4, @Y, (10)

(2) Ej s, is nonincreasing on average under local opera-
tions and classical communications (LOCC), /A\Sl Is,» where the
locality is defined in terms of the subsystem s; and s, [2,3,24—
271:

Ey o, (9) 2 Y piEin[A ()], (11)
J

where

A (0) =D piA 10 () (12)
J
are pure LOCC suboperations [13,28].

B. Bipartite entanglement of formation

A natural way to extend an entanglement measure to mixed
states is via the convex-roof extension [3,29-31]. EoF is de-
fined as the convex-roof extension of EoE:

Eksn(p) = inf [ijEslhz(z/?,-)], (13)
=3, pjv; ;

where “inf” becomes a “min” for discrete variable states, and
the sum can be replaced with an integral when considering a
continuum of pure states.

This is a reliable bipartite entanglement measure, as it
satisfies the mixed state extension of the aforementioned pos-
tulates [13] and an extra one, i.e.,

(3) For pure states & )5, reduces to the entropy of entan-
glement, i.e.,

Ersilsn (V) = Eg 15, (). (14)

As von Neumann entropy is concave, postulate 2 implies
that bipartite EoF is also nonincreasing under LOCC [3,24];

5F,x1 |52 (Ib) 2 gF,xl [s2 [Asl |s2 (15)] .

IV. M-PARTITE ENTANGLEMENT MEASURES

A. o Separability

Entanglement can also exist among several partitions.
There are several ways to divide an N-mode system into M
partitions. To make a distinction between the partitioning,
Szalay [13] introduced a hierarchy of separability classes. A
pure state, |y),,, is called “«a separable” when

W = Q) [V, (15)

where o denotes a specific partitioning of the N mode. For
example, a pure five-mode state is 1|23]|45-separable if and
only if the state can be written in the following way:

[¥) 1123185 = V1) @ [¥23) ® |as) (16)

Then an o-separable mixed state can be written in the
following way:

Pa =Y DilVie (Wl - (17)
J

We can then make a hierarchy for separability as follows: «
precedes or equals g if all subsystem in « can be written as a
subset or equal to a subsystem in 8, i.e.,

a<XpBoVsica, Is; € B:s; Cspr. (18)

If @ has a finer partition than g (i.e. < ), then a state which
is o separable must also be 8 separable.
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B. a-entropy of entanglement and a-entanglement of formation
1. a-von Neumann entropy

Let us define «-von Neumann entropy in the following
way:

1
Sa(P)= 5D S(s). (19)

Si€a

This is a measure that is well defined for all states p. Due to
the full additivity of S, S, is also fully additive:

Sa(Pa ® pB) = Say(Pa) + Say(PB) » (20)

where ac, C € {A, B}, is the subset of «, which includes the
part that overlaps with the system C.

2. a-entropy of entanglement and entanglement of formation

In the multipartite case, Szalay [13] defined the «-EoE of
a pure state i to be

E (Y1) = Su (). (21)

This measure can be interpreted as the sum of entanglement
between the partitions.

a-EoF is defined as the convex-roof extension to
a-EoE [13]:

Ero(p)=  inf

Z,P/ J

{Zp,E W) } (22)

a-EoE and EoF are reliable o-entanglement measures as they
satisfy the same postulates as the bipartite case, except we
must replace s;|s; with . «-entanglement measures also sat-
isfy an extra postulate:

(4) E, and &F, must satisfy the multipartite monotonicity
[13]:

Ey(p) 2 Eg(p), Ya = B, (23)

Era(P) 2 Erp(p), Yo X B. (24)

This means that an entanglement measure of finer partition
is sensitive to more entanglement within the system, hence
giving a larger value.

C. Total entropy of entanglement and total
entanglement of formation

1. Total entropy of entanglement

In this section we consider the finest partitioning of the
a-entanglement measure and refer to it as the total entropy of
entanglement (TEoE) and total entropy of formation (TEoF).
This measure evaluates the entanglement between every mode
that exists within the system. TEoE and TEoF satisfy the
same postulates as a-entanglement measures with the finest
partitioning.

For a pure N-mode state, 1& TEOoE is defined in the follow-
ing way:

N
EW) =30 = Z SITrviszn ()] (25)

TEOE is the sum of all entanglement between each mode and
the rest of the system. Due to multipartite monotonicity, this
measure is also the largest pure entanglement measure out of
the a-EoF. For this reason we refer to this quantity as the total
entanglement within the system.

To highlight a feature of this measure, let us consider a
two-mode entangled state, with a vacuum input in the third
mode. In this case, this measure will reduce down to the
bipartite entanglement between the two-mode entangled state,
giving the total entanglement within the system. In compari-
son, a genuine tripartite entanglement measure [32,33] would
be zero in this case, as there is only bipartite entanglement.

2. Total entanglement of formation

For an N-mode mixed state, o, TEoF is defined in the
following way:

&(p)=  inf {Zp,E(w,} (26)
Z,P/ J i

This measure quantifies the least-expected total entangle-
ment that is required to create the mixed state. Even though
this is a well-defined measure it is hard to compute, as there
are infinite degrees of freedom for the set {p;, ¥;}. In this
paper we limit ourselves to a Gaussian convex-roof extension
(i.e., the convex-roof extension is limited to an optimization
over Gaussian states) to overcome this problem. This measure
is an upper bound to EoF and only satisfies the Gaussian
version of the aforementioned postulates [7].

V. a-GAUSSIAN ENTANGLEMENT OF FORMATION

A. von Neumann entropy and «-EoE for Gaussian states

For Gaussian states, the von Neumann entropy of a state,
Py p- 18 fully characterized by its covariance matrix. The von
Neumann entropy of an N-mode Gaussian state with covari-
ance matrix o can be calculated as follows [34]:

N

1
52 k), 27)

n=1

S(o) =

where v, is the nth symplectic eigenvalue of o, and

Xt X_ X_
h —1 (5) - St (%) 28
(x) = —-log, > R A (28)
with x; = x &£ 1 an auxiliary function.

As the von Neumann entropy is fully characterized by its
covariance matrix, o-EoE of a pure state, ¥/, 5, is also fully
characterized by its covariance matrix. The «-EoE of a pure
state with covariance matrix x is calculated as follows:

1
—_ _ (si)
Eu(m) = 3 > oSy, (29)

si€a

A covariance matrix is pure if and only if det(x) = 1. The
superscript (s;) denotes the removal of all rows and columns
except for the subsystem s; in the covariance matrix. In the
density matrix representation, this is equivalent to a trace of
all subsystems except s;; hence det(*) # 1 in general.

042408-3



ONOE, TSERKIS, LUND, AND RALPH

PHYSICAL REVIEW A 102, 042408 (2020)

B. «-Gaussian entanglement of formation

A mixed Gaussian state p, 5 can be decomposed into a
mixture of pure Gaussian states in the following way:

o= [ dmdD . Dy (30)

where p is the probability density of p_ 5. In Ref. [7] the
authors defined the bipartite Gaussian entanglement of for-
mation (GEoF), and analogously, we define the «-GEoF as
follows:

Ec.a(Py ) Einf{ / drdD’ pu(m, D)E,(m)
’ Iz

1Py 5 = /dndﬁ’ M(n,ﬁ’)l/}m,}. (31)

This definition involves a minimization over infinite degrees
of freedom; however, by following the analysis of Ref. [7], we
find that Eq. (31) reduces to the following expression:

Egu(0) = igf{Ea(n)Io =7+ ¢}, (32)

where ¢ is a positive semidefinite matrix. This equation has
finite free parameters and therefore is a computable entangle-
ment measure. In Appendix A we utilize Eq. (32) to prove the
additivity of TGEoF.

VI. TOTAL GAUSSIAN ENTANGLEMENT OF FORMATION
FOR THREE-MODE STATES

A. Mixed three-mode Gaussian states

Gaussian local unitary operations (GLUO, refer to
Appendix B) are a class of Gaussian unitary operations com-
prised of single-mode squeezers and phase shifters. For mixed
three-mode states, we can utilize GLUO to reduce the state
into the standard form [32,35]:

aj (4] es 0 0 €4
er a e 0 0 e
e3 €q as 0 eg 0

Ost = 0 0 0 a () [ (33)

0O 0 e e a e
es e7 0 e e a3

As GLUO do not affect the entanglement, we can reduce
Eq. (32) to the following:

€6.0(0) = infiE(m)|ost — 7 > 0} (34)

In the next section, we fully parametrize .

B. Pure three-mode Gaussian states

By utilizing GLUO, L, we can reduce any = to the standard
form [36,37]. For the three-mode pure state, the standard form
is [38]

+ + 0

a, e, e 0 0
612 af 6;3 0 0 0
e e as 0 0 0
e = | €13 23 v v, (35)
f 0 0 0 ap e, e;
0 0 0 e, a ey
0 0 0 e ey a3

where eij; are a function of ay, a,, and a3. For ms to be a
physical covariance matrix the inequality |a; — a;| < a; — 1
must be satisfied [32]. All pure states can then be decomposed
in the following way:

n = Lug(ar, as, a3)L" . (36)

In general, L has nine free parameters, and hence the
minimization of Eq. (34) can be conducted over 12 free pa-
rameters. A numerical code which scans over all possible &
with a finite-size step for these 12 free parameters can be
created. The condition (¢’ — ") > 0 gives a finite range
for all local squeezing operations, a;, a,, and a3. The phase

parameters are limited to 0 > ¢ > 2.

C. q-p states

In this section we consider a special class of states where
we can reduce the number of free parameters to 6. In special
cases, the standard form of the mixed state reduces to the
following form:

aq €] es 0

er a e O
_|es €q as 0
=10 0 0 a e
0 0 0 (5] as €9

0 0 0 és €9 as

0
0
0
B (37

We will refer to these states as g-p states. g-p states have the
property that the § quadrature is completely uncorrelated to
the p quadrature. This means that we can write the following:

Op=0;D0p. (38)

Following the analysis in Ref. [7], we prove that the optimum
pure state to create such a state must also be a g-p state:

Tgp =75 DTy (39)

These states only have six free parameters, which greatly
reduces the complexity of the problem.

Proposition 1. Consider a q-p state oqp. For every pure
state, w < g, there exists a q-p pure state ]t:]p < o which
satisfies the following:

E(m) > E(n (40)

)
Proof. Any Gaussian pure state & can be written in the
following way [7,39]:

X XYy i|’ @n

mX,Y) = [YX YXY + X!

where X > 0 and Y are a real symmetric N x N matrix with
X > 0. For g-p states, Y = 0. For every og, > n(X,Y), we
have the following [7]:

op 2 n(X,Y)=04p > n(X,0). 42)

We also have that the determinant of the single mode
x"(X,Y) is always larger than 7™ (X, 0):

det[z" (X, 0)] < det[z"™(X,Y)]. (43)

The entropy of a single-mode state is computed to be;

S(0,) = h(y/det(c™)). (44)
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FIG. 1. A plot demonstrating how TGEoF changes with input
noise. The red line represents the TGEoF for a thermal input, p;,
in all three modes. The blue line represents the TGEoF for thermal
input in one mode, with all other modes being a vacuum input.

As this is true for every mode, combining Egs. (44) and (43)
gives the following:

E[x"(X,0)] < E[x"(X,Y)]. (45)
Equations (42) and (45) complete the proof. |

D. Numerical results

Consider a two-mode Gaussian state where one of the
modes is thermal while the others are vacuum. When a two-
mode squeezer is applied to such a state, the bipartite GEoF
is constant regardless of the number of photons in the thermal
mode [38,40,41].

We aim to replicate an analogous result in the tripartite
case, utilizing TGEoF. We consider a case where a three-
mode squeezer, S3 (details of this operation can be found in
Appendix C), is applied to an input with with all three modes
which are thermal with an average of 7 particles. Since the
output state is a q-p state, we conduct an numerical opti-
mization over the g-p state to obtain Fig. 1. We repeat this
process in the case where S is applied to an input with one
mode which is thermal and the rest being a vacuum. TGEoF
is constant when there is only one thermal input, which is an
analogous result to the two-mode case.

VII. CONCLUSION

In this paper, we utilized the analysis of Ref. [13] on mul-
tipartite entanglement measures and applied it to the Gaussian
regime. We successfully demonstrated that the degrees of
freedom for this measure reduces down to a finite one for all
Gaussian states. In particular, we were interested in a special
case of «-GEoF, TGEoF, which quantifies the least expected
total entanglement that is required to create the state. We
proved that this measure is fully additive. In the last section we
quantified its value for simple three-mode Gaussian states and
demonstrated that this measure displayed analogous features
to the two-mode case.

An interesting future research direction would be to com-
pare TGEoF and TEoF. For the two-mode case, it has been
proven that TGEoF and TEoF coincide with each other for
Gaussian states [8,9]. It would be beneficial to prove that this
can be extended to the N-mode case. Combined with the result
that TGEoF is additive, as proven by this paper, the additivity
of TEoF would then be proven for Gaussian states in general.

In this paper we were particularly interested in TEoF; how-
ever, there are other interesting «-EoF measures. In particular,
there is an a-EoF which quantifies the genuine tripartite en-
tanglement within a three-mode system [13,33]. We refer to
this measure as a genuine tripartite entanglement measure,
as it vanishes for all states which are not genuinely tripartite
entangled states. A recent paper [33] looked into finding an
upper bound to this measure for the DV case. It would be
interesting to apply this to the Gaussian regime and investigate
how useful the measure is.
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APPENDIX A: ADDITIVITY OF TOTAL GAUSSIAN
ENTANGLEMENT OF FORMATION

Proposition 2. TGEoF for Gaussian states ¢ = 04 @ o is
fully additive, i.e.,

E(oa ® 0p) = Eg(0a) + EG(ap). (A1)

where o4 and o is an N-mode and N'-mode Gaussian state,
respectively.

Proof. TGEOF is by construction subadditive, i.e.,
Ea(oa ® o) < Ec(04) + E6(05) . (A2)

and thus its additivity can be shown by proving that TGEOF is
superadditive too, i.e.,

Ec(oa D ap) = Eg(aa) + Eclop). (A3)

The Gaussian state ¢ = 04 @ o can decomposed as
o=0,Pog=m+ 9, (A4)
os =2V + oW, o5 =aP + 9P, (A5)

where 7 is a pure Gaussian state and ¢ is a positive semidef-
inite matrix. For any ¢ > 0, the TGEOF for the states 4 and
o p satisfies

Ea(@™) = Eg (™ + W) = Eg(oa), (Aba)
Ecm®) = E(x® + oP) = Eg(op), (A6b)

so we have
Ea(@™) + & ®) 2 Ec(oa) + Es(op) . (AT)

The N-mode state 7@ and N’-mode state 78 in the above
inequality can also be decomposed as follows:

M =m,+ @, (A8a)
7® =m5+ 9y, (A8b)
and again for arbitrary ¢, > 0 and ¢ > 0 we have
Ea(ma) > Ea(ma + ¢4) = &™), (A9a)
Ea(mp) > Ea(mp + ¢p) = E(m®),  (AID)
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which implies
E(ma) + Ec(mp) = Ec(x™?) + Eg(n™®). (A10)

Since w4 and mp are pure states, their TGEoF is equivalent to
their entropy of entanglement, i.e.,

Ea(ma) = E(ma) = S(ma) . (Alla)
E(np) = E(np) = S(np), (Allb)
and for arbitrary ¢, > 0 and ¢ > 0 we get
Sy = §(ms +@4) = S(ma), (Al2a)
S(®) = S(np + @p) > S(ma), (A12b)

which combined with the inequality (A7) and (A 10) turns into

S +5x®) > Eg(0a) + Ea (o) - (Al3)

We now notice that for any (N 4+ N’)-mode state o we have

$(04,5,) = S(a¥) + 5(02),

5152 5152

(A14)
and thus the left-hand side of the inequality (A13) becomes

S(x?) + 3(#x®) = S(x) = E(n). (A15)

Given that the above equality is true for every m satisfying
Eq. (A4), it should be also true for the “optimal” &, that gives
the TGEOF of the global state 0 = 04 @ o in Eq. (A4), i.e.,

E(0) =Ec(oa @ op) = E(m,). (A16)

Combining the above equations (A15) and (A16) with the
inequality (A13), we get

E(oa ® op) = Eg(oa) + EG(ap), (A17)

which completes the proof. |

APPENDIX B: GAUSSIAN LOCAL
UNITARY OPERATIONS

In this section we introduce a useful class of opera-
tions, Gaussian local unitary operations. GLUO are operations
which do not increase or decrease the amount of entangle-
ment. By definition, these operations are a subset of LOCC
(here, locality is defined with respect to each mode), which
means that they cannot increase the entanglement. As these
operations are locally reversible (i.e., unitary in terms of the
Heisenberg picture), they cannot decrease the entanglement.

We introduce the GLUO of an N-mode state as follows:

LE@ L,, (B1)

where L, is the GLUO in each mode. Each GLUO can be de-
composed through the Bloch Messiah decomposition [42,43]
as

L, = L(¢,)L(r,)L(¢,) , (B2)
where
_ [ cos(¢)  sin(¢)
L(¢):[—sin(¢) COS(¢)] (B3)

mode 1 i @ 5 z @ ;
mode 2 E @ : ﬁ @ ;
mode n @ E @ @

FIG. 2. A schematic decomposition of all GLUO operations.

corresponds to phase rotations, and

e 0
L(r) = [0 e,,] (B4)
corresponds squeezing operations. A schematic diagram of
this decomposition for GLUO is shown in Fig. 2.

APPENDIX C: SYMMETRIC THREE-MODE
SQUEEZING OPERATION

The Heisenberg evolution of a three-mode squeezing oper-
ation is as follows [44]:
ot 5 6 P Lo [ 2 06 o
87285 = cosh(r)a; + smh(r)<—§a; +3@+ ak)> . (Cl)
The symplectic matrix representation of the three-mode oper-
ation is given by

ar By By O 0 0
B+ o B+ O 0 0
_ | B+ B+ ar O 0 0
S3(r3) - 0 0 0 o ,3_ ﬂ— ’ (C2)
0 0 0 B o pB-
0 0 0 B. B oa_
where we have defined the following:
inh 2 sinh
s = cosh(ry) F oo 3(”) . Br= i%(“) . (D)

We obtain the GhZ/W state [32] when we apply this op-
erator onto the vacuum state. In the standard form [38], this
state can be written in the following way:

TGnzyw,st(r3) = (S3S3T)Sf

o B f 0 0 0
B, o« B 0 0 0
By B o« 0 0 0
=10 0 0 o p p| @
0o 0 0 B o B
0 0 0 B B o
where
1
o = 3\/9 cosh(2r3)? — sinh(2r3)?,
2 sinh(2 3 cosh(2r3) = | sinh(2
4, = o 2sinh@r)] [3cosh@ry) £ [sinh@r)] o
3 3 cosh(2r3) F | sinh(2r3)|
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The Bloch-Messiah decomposition [42,43] of this oper-
ator can be found in a straightforward fashion by set-

ting the local squeezers to be equal with 27 /3 phase
differences.
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