9,008 research outputs found

    Heteroepitaxy of deposited amorphous layer by pulsed electron-beam irradiation

    Get PDF
    We demonstrate that a single short pulse of electron irradiation of appropriate energy is capable of recrystallizing epitaxially an amorphous Ge layer deposited on either or Si single-crystal substrate. The primary defects observed in the case were dislocations, whereas stacking faults were observed in samples

    Epitaxial growth of deposited amorphous layer by laser annealing

    Get PDF
    We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing

    Quantum transport at the Dirac point: Mapping out the minimum conductivity from pristine to disordered graphene

    Get PDF
    The phase space for graphene's minimum conductivity σmin\sigma_\mathrm{min} is mapped out using Landauer theory modified for scattering using Fermi's Golden Rule, as well as the Non-Equilibrium Green's Function (NEGF) simulation with a Monte Carlo sampling over impurity distributions. The resulting `fan diagram' spans the range from ballistic to diffusive over varying aspect ratios (W/LW/L), and bears several surprises. {The device aspect ratio determines how much tunneling (between contacts) is allowed and becomes the dominant factor for the evolution of σmin\sigma_{min} from ballistic to diffusive regime. We find an increasing (for W/L>1W/L>1) or decreasing (W/L<1W/L<1) trend in σmin\sigma_{min} vs. impurity density, all converging around 128q2/π3h4q2/h128q^2/\pi^3h\sim 4q^2/h at the dirty limit}. In the diffusive limit, the {conductivity} quasi-saturates due to the precise cancellation between the increase in conducting modes from charge puddles vs the reduction in average transmission from scattering at the Dirac Point. In the clean ballistic limit, the calculated conductivity of the lowest mode shows a surprising absence of Fabry-P\'{e}rot oscillations, unlike other materials including bilayer graphene. We argue that the lack of oscillations even at low temperature is a signature of Klein tunneling

    Complete and safe resection of challenging retroperitoneal tumors: anticipation of multi-organ and major vascular resection and use of adjunct procedures.

    Get PDF
    BackgroundRetroperitoneal tumors are often massive and can involve adjacent organs and/or vital structures, making them difficult to resect. Completeness of resection is within the surgeon's control and critical for long-term survival, particularly for malignant disease. Few studies directly address strategies for complete and safe resection of challenging retroperitoneal tumors.MethodsFifty-six patients representing 63 cases of primary or recurrent retroperitoneal tumor resection between 2004-2009 were identified and a retrospective chart review was performed. Rates of complete resection, use of adjunct procedures, and perioperative complications were recorded.ResultsIn 95% of cases, complete resection was achieved. Fifty-eight percent of these cases required en bloc multi-organ resection, and 8% required major vascular resection. Complete resection rates were higher for primary versus recurrent disease. Adjunct procedures (ureteral stents, femoral nerve monitoring, posterior laminotomy, etc.) were used in 54% of cases. Major postoperative complications occurred in 16% of cases, and one patient died (2% mortality).ConclusionsComplete resection of challenging retroperitoneal tumors is feasible and can be done safely with important pre- and intraoperative considerations in mind

    Laser pulse annealing of ion-implanted GaAs

    Get PDF
    GaAs single-crystals wafers are implanted at room temperature with 400-keV Te + ions to a dose of 1×10^15 cm^–2 to form an amorphous surface layer. The recrystallization of this layer is investigated by backscattering spectrometry and transmission electron microscopy after transient annealing by Q-switched ruby laser irradiation. An energy density threshold of about 1.0 J/cm^2 exists above which the layer regrows epitaxially. Below the threshold the layer is polycrystalline; the grain size increases as the energy density approaches threshold. The results are analogous to those reported for the elemental semiconductors, Si and Ge. The threshold value observed is in good agreement with that predicted by the simple model successfully applied previously to Si and Ge

    Prospect of determining the Dirac/Majorana state of neutrino by Multi-OWL experiment

    Full text link
    We consider the non-radiative two body decay of a neutrino to a daughter neutrino with degraded energy and a very light particle (Majoron). Ultrahigh energy neutrinos from an astrophysical source like a Gamma Ray Burst undergoing this decay process are found to produce different number of events in the detector depending on whether they are Majorana or Dirac particles. The next generation large scale experiments like Multi-OWL is expected to provide us an accurate determination of the flux of neutrinos from astrophysical sources and this may enable us to distinguish between the Dirac and Majorana nature of neutrino.Comment: 18 pages latex, no figure. Journal of Phys. G in pres

    The first products made in space: Monodisperse latex particles

    Get PDF
    The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles
    corecore