772 research outputs found

    Sequence diversity within the HA-1 gene as detected by melting temperature assay without oligonucleotide probes

    Get PDF
    BACKGROUND: The minor histocompatibility antigens (mHags) are self-peptides derived from common cellular proteins and presented by MHC class I and II molecules. Disparities in mHags are a potential risk for the development of graft-versus-host disease (GvHD) in the recipients of bone marrow from HLA-identical donors. Two alleles have been identified in the mHag HA-1. The correlation between mismatches of the mHag HA-1 and GvHD has been suggested and methods to facilitate large-scale testing were afterwards developed. METHODS: We used sequence specific primer (SSP) PCR and direct sequencing to detect HA-1 gene polymorphisms in a sample of 131 unrelated Italian subjects. We then set up a novel melting temperature (Tm) assay that may help identification of HA-1 alleles without oligonucleotide probes. RESULTS: We report the frequencies of HA-1 alleles in the Italian population and the presence of an intronic 5 base-pair deletion associated with the immunogeneic allele HA-1(H). We also detected novel variable sites with respect to the consensus sequence of HA-1 locus. Even though recombination/gene conversion events are documented, there is considerable linkage disequilibrium in the data. The gametic associations between HA-1(R/H )alleles and the intronic 5-bp ins/del polymorphism prompted us to try the Tm analysis with SYBR(® )Green I. We show that the addition of dimethylsulfoxide (DMSO) during the assay yields distinct patterns when amplicons from HA-1(H )homozygotes, HA-1(R )homozygotes, and heterozygotes are analysed. CONCLUSION: The possibility to use SYBR(® )Green I to detect Tm differences between allelic variants is attractive but requires great caution. We succeeded in allele discrimination of the HA-1 locus using a relatively short (101 bp) amplicon, only in the presence of DMSO. We believe that, at least in certain assets, Tm assays may benefit by the addition of DMSO or other agents affecting DNA strand conformation and stability

    Lymphoepithelioma-like carcinoma of the vulva, an underrecognized entity? Case report with a single inguinal micrometastasis detected by sentinel node technique

    Get PDF
    This report describes an unusual EBV-negative lymphoepithelioma-like carcinoma of the vulva in a 73-year-old patient. The lesion was localised at the right minor labium and was resected by partial vulvectomy. A synchronous sentinel lymph node biopsy revealed a single micrometastasis in the right inguinal region, which prompted local radiotherapy. Follow-up nine months later showed only slight vulvar atrophy, without signs of local recurrence or distant metastases

    Treating breast cancer through novel inhibitors of the phosphatidylinositol 3'-kinase pathway

    Get PDF
    Recent studies indicate that constitutive signaling through the phosphatidylinositol 3'-kinase (PI3K) pathway is a cause of treatment resistance in breast cancer patients. This implies that patients with tumors that exhibit aberrant PI3K signaling may benefit from targeted pathway inhibitors. The first agents to make it to the clinic are the rapamycin analogs. These compounds inhibit the downstream PI3K effector mTOR (mammalian target of rapamycin). A study presented in this issue of Breast Cancer Research suggests that recently developed inhibitors of phosphoinositide-dependent protein kinase 1, a more proximal target of the PI3K pathway, may provide an alternative route to effective PI3K pathway inhibition for breast cancer treatment

    Surgical resectability of pancreatic adenocarcinoma: CTA

    Get PDF
    Imaging studies play an important role in the diagnosis and management of patients with pancreatic adenocarcinoma. Computed tomography (CT) is the most widely available and best validated modality for imaging these patients. Meticulous technique following a well-designed pancreas protocol is essential for maximizing the diagnostic efficacy of CT. After the diagnosis of pancreatic adenocarcinoma is made, the key to management is staging to determine resectability. In practice, staging often entails predicting the presence or absence of vascular invasion by tumor, for which several radiologic grading systems exist. With advances in surgical techniques, the definition of resectability is in evolution, and it is crucial that radiologists have an understanding of the implications of findings that are relevant to the determination of resectability

    ICONS II: Identifying Continence OptioNs after Stroke randomised controlled trial

    Get PDF
    Lois Thomas, Christine Roffe, Joanne Booth, Christopher Chapple, Caroline Watkins, Brenda Roe, Christopher Sutton, Bruce Hollingsworth, Céu Mateus, David Britt, Cliff Panton and Kina Bennett; for the MRC Continence Programme and R&D Stroke and Incontinence Stud

    Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in gastrointestinal tumour

    Get PDF
    The human DOC-2/DAB2 interactive protein (hDAB2IP) gene is a novel member of the Ras GTPase-activating family and has been demonstrated to be a tumour-suppressor gene inactivated by methylation in several cancers. In this study, we analysed the methylation and expression status of hDAB2IP in gastrointestinal tumours. The promoter region of hDAB2IP was divided into two regions (m2a and m2b) based on our previous report, and the methylation status was determined by bisulphite DNA sequencing in gastric cancer cell lines. The gene expression was semiquantified by real-time RT–PCR, and the results indicated that the m2b promoter region might be an authentic methylation-mediated key regulator of the gene expression. Based on the sequence data, we developed a methylation-specific PCR (MSP) for the m2a and m2b regions and applied it to the samples. Methylation-specific PCR revealed aberrant methylation in the m2a region in eight of 12 gastric cancer cell lines (67%), 16 of 35 gastric cancer tissues (46%) and 29 of 60 colorectal cancer tissues (48%), and in the m2b region in eight of 12 cell lines (67%), 15 of 35 gastric cancer tissues (43%) and 28 of 60 colorectal cancer tissues (47%). On the other hand, seven (12%) and 11 (19%) of 59 gastrointestinal nonmalignant mucosal specimens showed methylation in the m2a and m2b regions, respectively, suggesting that hDAB2IP methylation might play a causative role in carcinogenesis. The 5-aza-2′-deoxycytidine treatment restored the gene expression in the m2b-methylated cell lines, confirming that the methylation caused gene downregulation. We also examined the relationship between hDAB2IP methylation and the clinicopathological features in patients with primary tumours, and determined that methylation in the m2b region was associated with location of the tumour in the stomach. In summary, our results demonstrated that hDAB2IP methylation is frequently present in gastrointestinal tumours and that the resulting gene silencing plays an important role in gastrointestinal carcinogenesis

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore