24 research outputs found

    Effects of processing parameters on the morphology, structure, and magnetic properties of Cu1βˆ’xFexCr2Se4 nanoparticles synthesized with chemical methods

    Get PDF
    Cu1βˆ’xFexCr2Se4 nanoparticles with x = 0, 0.2, and 0.4 were synthesized via thermal decomposition of metal nitrate or chloride salts and selenium powder using different precursor compositions and processing details. Single crystalline nano-belts or nano-rods coexist in the synthesized powder samples with hexagon-shaped plates in dependence on the precursor composition. The belts gathered into conglomerates forming β€œhierarchical” particles. Visible magnetic circular dichroism (MCD) of Cu1βˆ’xFexCr2Se4 nanoparticles embedded into a transparent matrix was investigated for the first time. The similarity of the MCD spectra of all samples showed the similarity of the nanoparticles electronic structure independent of their morphology. Basing on the MCD spectral maxima characteristics, electron transitions from the ground to the excited states were identified with the help of the conventional band theory and the multi-electron approach

    Iron Sulfide Nanoparticles: Preparation, Structure, Magnetic Properties

    No full text
    The series of iron sulfide nanoparticles (NPs) were synthesized with the polyol mediated process which exploits high-boiling polyalcohol solvents at different boiling temperatures (TB) what determined the NPs phase state from Fe3S4 to FeS. The XRD and HRTEM revealed the content of the Fe3S4 cubic phase to reduce linearly with the TB increase, and at TB=320 β—¦C the FeS phase became predominant. Non monotonous coercivity dependence on the NPs phase state is revealed and interpreted

    Iron Sulfide Nanoparticles: Preparation, Structure, Magnetic Properties

    Get PDF
    The series of iron sulfide nanoparticles (NPs) were synthesized with the polyol mediated process which exploits high-boiling polyalcohol solvents at different boiling temperatures (TB) what determined the NPs phase state from Fe3S4 to FeS. The XRD and HRTEM revealed the content of the Fe3S4 cubic phase to reduce linearly with the TB increase, and at TB=320 β—¦C the FeS phase became predominant. Non monotonous coercivity dependence on the NPs phase state is revealed and interpreted

    Effects of processing parameters on the morphology, structure, and magnetic properties of Cu1βˆ’xFexCr2Se4 nanoparticles synthesized with chemical methods

    No full text
    Cu1βˆ’xFexCr2Se4 nanoparticles with x = 0, 0.2, and 0.4 were synthesized via thermal decomposition of metal nitrate or chloride salts and selenium powder using different precursor compositions and processing details. Single crystalline nano-belts or nano-rods coexist in the synthesized powder samples with hexagon-shaped plates in dependence on the precursor composition. The belts gathered into conglomerates forming β€œhierarchical” particles. Visible magnetic circular dichroism (MCD) of Cu1βˆ’xFexCr2Se4 nanoparticles embedded into a transparent matrix was investigated for the first time. The similarity of the MCD spectra of all samples showed the similarity of the nanoparticles electronic structure independent of their morphology. Basing on the MCD spectral maxima characteristics, electron transitions from the ground to the excited states were identified with the help of the conventional band theory and the multi-electron approach

    Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°

    Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°

    Structural and magnetic properties of Fe1βˆ’x Co x Se1.09 nanoparticles obtained by thermal decomposition

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.A series of Fe1βˆ’x CoxSe1.09 (x = 0 to 1) nanoparticles were synthesized by thermal decomposition method. Particles in composition range Fe0.5Co0.5Se1.09 to CoSe1.09 crystallized in monoclinic structure of Co6.8Se8, while FeSe1.09 crystallized in hexagonal structure of FeSe achavalite. Magnetization dependences on temperature and external magnetic field reveal complicated magnetic behavior and correspond to the sum of paramagnetic and superparamagnetic response. MΓΆssbauer spectra contain several paramagnetic doublets with parameters corresponding to nonequivalent positions of divalent and trivalent iron cations with low spin. The nonequivalent positions appeared due to inhomogeneous distribution of Co ions or metal vacancies in iron surrounding
    corecore