15 research outputs found

    Long-term follow-up of patients with surgical intractable acromegaly after linear accelerator radiosurgery

    Get PDF
    Background/PurposeRadiotherapy is a crucial treatment for acromegalic patients with growth hormone (GH)-secreting pituitary tumors. However, its effect takes time. We retrospectively reviewed the long-term outcome of linear accelerator stereotactic radiosurgery (LINAC SRS) for patients with acromegaly from the perspective of biochemical remission and associated factors.MethodsTwenty-two patients presenting with residual or recurrent (GH)-secreting functional pituitary tumor between 1994 and 2004 who received LINAC SRS were enrolled and followed up for at least 3 years. Residual or recurrent tumor was defined as persistent elevated GH or insulin-like growth factor-1 (IGF-1) level and image-confirmed tumor after previous surgical treatment. Biochemical remission was defined as fasting GH less than 2.5 ng/mL with normal sex-and-age adjusted IGF-1.ResultsThe mean follow-up period was 94.7 months (range 36–161 months). Overall mean biochemical remission time was 53 months (median 30 months). Biochemical control was achieved in 15 patients (68.2%) over the follow up period. One patient experienced recurrence after SRS and underwent another operation. Initial GH at diagnosis and pre-SRS GH correlated with biochemical control (p = 0.005 and p < 0.0001, respectively). Further evaluation demonstrated that biochemical control stabilized after 7.5 years. Overall post-SRS hormone deficit persisted in five patients (22.7%).ConclusionIn comparison to other radiosurgery modalities, LINAC radiosurgery also provides a satisfactory outcome. SRS has maximum effect over the first 2 years and stabilizes after 7.5 years. Moreover, SRS elicits long-term biochemical effects and requires longer follow-up for better biochemical remission

    Decrease in seroprevalence of Hepatitis A after the implementation of nationwide disposable tableware use in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Taiwan is an endemic area of viral hepatitis, including hepatitis A, which is transmitted mainly from the fecal-oral route. In order to reduce the transmission through food intake, the government implemented a policy of nationwide disposal tableware use in public eating places in 1982. We conducted a study to estimate the seroprevalence of Hepatitis A in a group of workers in Taiwan in 2005, determine the risk factors, and compare seroprevalence to published estimates in Taiwan to evaluate changes in the seroprevalence after the implementation of the nationwide disposal tableware use.</p> <p>Methods</p> <p>We recruited workers of an industrial park during their annual health examinations in 2005 and measured their anti-hepatitis A virus IgG titer using microparticle enzyme immunoassay. We compared the seroprevalence across different birth cohorts within the study population and also analyzed data from previous studies.</p> <p>Results</p> <p>The overall sero-positive rate was 22.0% in the 11,777 participants. The rate was much lower among those who were covered by the program since birth (born after 1982) in comparison with those who were not (2.7% vs. 25.3%, p < 0.001). From the analyses of data from pervious studies, we found the age-specific rates were similar in cohorts born in or after 1982 across studies conducted in different time periods but decreased with the calendar year in cohorts born before 1982. In particular, the age-specific seroprevalence dropped to less than one third in a three-year period among those who were born around 1982.</p> <p>Conclusions</p> <p>Data from both the current and previous studies in different time periods supported the effectiveness of disposal tableware in preventing the transmission of hepatitis A.</p

    Hybrid Power Systems for Buildings and Factories

    No full text
    Integrated hybrid power systems have become more and more important in recent years. The functioning of medium-temperature proton-conducting solid oxide fuel cell (pSOFC) hybrid system is proposed in this work. The combined system consists of a pSOFC stack, steam methane reformer, compressors, burners, heat exchangers and methanol synthesizing reactor. The excess waste heat of the burner is recovered using heat exchangers. Also, the unutilized hydrogen from SOFC is used for carbon reduction by methanol production. The functioning of configured system is explored by using Matlab/Simulink/Thermolib software. In pSOFC operation, stoichiometric ratio (Sto) of air is maintained 3 and Sto of hydrogen is varied between 1.4 to1.7. Results show that the benefit of carbon reduction depends on methanol production. By using water separator, the methanol production efficiency increases dramatically. In addition, hydrogen transfer membrane is used to increase stack efficiency and control the temperature of stack chamber and reformer. This further improves benefit of carbon reduction. The proposed hybrid system in this work can be used to power huge residential buildings and some factories

    An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    No full text
    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies
    corecore