132 research outputs found

    Modeling SNR G1.9+0.3 as a Supernova Inside a Planetary Nebula

    Full text link
    Using 3D numerical hydrodynamical simulations we show that a type Ia supernova (SN Ia) explosion inside a planetary nebula (PN) can explain the observed shape of the G1.9+0.3 supernova remnant (SNR) and its X-ray morphology. The SNR G1.9+0.3 morphology can be generally described as a sphere with two small and incomplete lobes protruding on opposite sides of the SNR, termed "ears", a structure resembling many elliptical PNe. Observations show the synchrotron X-ray emission to be much stronger inside the two ears than in the rest of the SNR. We numerically show that a spherical SN Ia explosion into a circumstellar matter (CSM) with the structure of an elliptical PN with ears and clumps embedded in the ears can explain the X-ray properties of SNR G1.9+0.3. While the ejecta has already collided with the PN shell in most of the SNR and its forward shock has been slowed down, the ejecta is still advancing inside the ears. The fast forward shock inside the ears explains the stronger X-ray emission there. SN Ia inside PNe (SNIPs) seem to comprise a non-negligible fraction of resolved SN Ia remnants.Comment: Revised version. 19 pages, 8 figures. Accepted to MNRA

    Planning the experiment and optimization of the content of nanoadition in polypropylene monothreads

    Get PDF
    ΠŸΠ»Π°Π½ΡƒΠ²Π°Π½Π½Ρ СкспСримСнту Ρ‚Π° оптимізація складу ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½/Π±Ρ–Π½Π°Ρ€Π½Π° Π½Π°Π½ΠΎΠ΄ΠΎΠ±Π°Π²ΠΊΠ° Ρ‰ΠΎΠ΄ΠΎ одСрТання ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½ΠΎΠ²ΠΈΡ… ΠΌΠΎΠ½ΠΎΠ½ΠΈΡ‚ΠΎΠΊ Π· високими ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΠΌΠΈ Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΠΌΠΈ властивостями. Для планування СкспСримСнту застосовано симплСксно-Π³Ρ€Π°Ρ‚ΠΊΠΎΠ²ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρƒ псСвдокоординатах. ΠžΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–ΡŽ вмісту Π½Π°Π½ΠΎΠ΄ΠΎΠ±Π°Π²ΠΊΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π· використанням ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΡŽ Π₯Π°Ρ€Ρ€ΠΈΠ½Π³Ρ‚ΠΎΠ½Π°. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ модСлювання дослідТСно Π²ΠΏΠ»ΠΈΠ² Π½Π°Π½ΠΎΠ΄ΠΎΠ±Π°Π²ΠΊΠΈ срібло/ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌ (Ag/SiO2) Π½Π° властивості ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½ΠΎΠ²ΠΈΡ… (ПП) ΠΌΠΎΠ½ΠΎΠ½ΠΈΡ‚ΠΎΠΊ Ρ‚Π° ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·ΠΎΠ²Π°Π½ΠΎ склад ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— для Ρ—Ρ… формування. Π‘Ρ‚Π²ΠΎΡ€Π΅Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π° модСль, Ρ‰ΠΎ Π²ΡΡ‚Π°Π½ΠΎΠ²Π»ΡŽΡ” взаємозв’язок ΠΌΡ–ΠΆ вмістом ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² ΡΡƒΠΌΡ–ΡˆΡ– Ρ‚Π° властивостями Π½Π°Π½ΠΎΠ½Π°ΠΏΠΎΠ²Π½Π΅Π½ΠΈΡ… ПП Π½ΠΈΡ‚ΠΎΠΊ. ΠœΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½Ρ– ΠΌΠΎΠ½ΠΎΠ½ΠΈΡ‚ΠΊΠΈ, сформовані Π· ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ складу ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— ПП/Π½Π°Π½ΠΎΠ΄ΠΎΠ±Π°Π²ΠΊΠ°, ΠΏΠΎΡ”Π΄Π½ΡƒΡŽΡ‚ΡŒ високі ΠΌΡ–Ρ†Π½Ρ–ΡΡ‚ΡŒ, Π΅Π»Π°ΡΡ‚ΠΈΡ‡Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ Π΄Ρ–ΡŽ

    A method of forming composite structures using in situ -formed liquid crystal polymer fibers in a thermoplastic matrix

    Full text link
    A new high speed and potentially economical method of creating a composite material and structures therefrom is tested. The method consists of spinning composite fibers from a melt blend of a thermoplastic with a liquid crystal polymer (LCP). Discontinuous fibrils of the LCP are formed in situ during the spinning process. These composite fibers are aligned and placed in a mold and heated to melt the thermoplastic matrix, but not the fibrils. A finished composite structure reinforced by the LCP fibrils is obtained when the thermoplastic phase is consequently consolidated. Our experiments show the proposed process is reasonable for an easily processed polystyrene matrix. High modulus fibrils with essentially infinite L/D ratios are readily produced in the extrusion process using 40 wt% of a wholly aromatic poly(ester-co-amide) LCP from Celanese. The integrity and alignment of the LCP fibrils is retained in the molding step. Mechanical tests show that the fibers produced by high shear rate processing have a stiffness approaching 23 GPa and match an axial rule-of-mixtures theory. The use of polystyrene resulted in brittleness. Molded composite plates exhibit slightly lower stiffness and significantly lower strength than individual fibers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38419/1/750110103_ftp.pd

    Observational Constraints on the Common Envelope Phase

    Full text link
    The common envelope phase was first proposed more than forty years ago to explain the origins of evolved, close binaries like cataclysmic variables. It is now believed that the phase plays a critical role in the formation of a wide variety of other phenomena ranging from type Ia supernovae through to binary black holes, while common envelope mergers are likely responsible for a range of enigmatic transients and supernova imposters. Yet, despite its clear importance, the common envelope phase is still rather poorly understood. Here, we outline some of the basic principles involved, the remaining questions as well as some of the recent observational hints from common envelope phenomena - namely planetary nebulae and luminous red novae - which may lead to answering these open questions.Comment: 29 pages, 8 figures. To appear in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds. Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556
    • …
    corecore