436 research outputs found

    Two-Dimensional Topological Insulator State and Topological Phase Transition in Bilayer Graphene

    Full text link
    We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the presence of Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved time-reversal symmetry is a quantum valley Hall insulator for small Rashba SO coupling λR\lambda_{\mathrm{R}}, and transitions to a strong TI when λR>U2+t⊥2\lambda_{\mathrm{R}} > \sqrt{U^2+t_\bot^2}, where UU and t⊥t_\bot are respectively the interlayer potential and tunneling energy. Different from a conventional quantum spin Hall state, the edge modes of our strong TI phase exhibit both spin and valley filtering, and thus share the properties of both quantum spin Hall and quantum valley Hall insulators. The strong TI phase remains robust in the presence of weak graphene intrinsic SO coupling.Comment: 5 pages and 4 figure

    Topological phases in gated bilayer graphene: Effects of Rashba spin-orbit coupling and exchange field

    Full text link
    We present a systematic study on the influence of Rashba spin-orbit coupling, interlayer potential difference and exchange field on the topological properties of bilayer graphene. In the presence of only Rashba spin-orbit coupling and interlayer potential difference, the band gap opening due to broken out-of-plane inversion symmetry offers new possibilities of realizing tunable topological phase transitions by varying an external gate voltage. We find a two-dimensional Z2Z_2 topological insulator phase and a quantum valley Hall phase in ABAB-stacked bilayer graphene and obtain their effective low-energy Hamiltonians near the Dirac points. For AAAA stacking, we do not find any topological insulator phase in the presence of large Rashba spin-orbit coupling. When the exchange field is also turned on, the bilayer system exhibits a rich variety of topological phases including a quantum anomalous Hall phase, and we obtain the phase diagram as a function of the Rashba spin-orbit coupling, interlayer potential difference, and exchange field.Comment: 15 pages, 17figures, and 1 tabl

    Quantum Anomalous Hall Effect in Graphene from Rashba and Exchange Effects

    Get PDF
    We investigate the possibility of realizing quantum anomalous Hall effect in graphene. We show that a bulk energy gap can be opened in the presence of both Rashba spin-orbit coupling and an exchange field. We calculate the Berry curvature distribution and find a non-zero Chern number for the valence bands and demonstrate the existence of gapless edge states. Inspired by this finding, we also study, by first principles method, a concrete example of graphene with Fe atoms adsorbed on top, obtaining the same result.Comment: 4 papges, 5 figure

    Isolation and identification of potent antidiabetic compounds from Antrodia cinnamomea - An edible Taiwanese mushroom

    Get PDF
    [[abstract]]Antrodia cinnamomea (AC), an edible Taiwanese mushroom, has been recognized as a valuable natural resource with vast biological and medicinal benefits. Recently, the hypoglycemic and anti-diabetic effects of AC were mentioned in several studies. However, no studies have investigated α-glucosidase inhibitors from AC fruiting bodies (ACFB) as they relate to type 2 diabetes (T2D) treatment. The purpose of this study was to gain evidence of potent α-glucosidase inhibitory effects, as well as isolate, identify and characterize the active compounds of ACFB. The MeOH extract of ACFB demonstrated potent α-glucosidase inhibitory activity, and possessed high pH stability (pH 2–11) and thermostable properties at 40–50 ◦C. Further purification led to the isolation of eight constituents from ACFB, identified as: 25S-antcin K (1), 25R-antcin K (2), dehydrosulphurenic acid (3), 25S-antcin I (4), 25S-antcin B (5), 25R-antcin B (6), dehydroeburicoic acid (7) and eburicoic acid (8). Notably, the ACFB extract and its identified compounds, except 1, 4, and 6 demonstrated a greater effect (EC50 = 0.025–0.21 mg/mL) than acarbose (EC50 = 0.278 mg/mL). As such, these active compounds were determined to be new potent mushroom α-glucosidase inhibitors. These active compounds were also identified on the HPLC fingerprints of ACFB.[[sponsorship]]MOST[[notice]]補正完

    Quantum Anomalous Hall Effect in Single-layer and Bilayer Graphene

    Full text link
    The quantum anomalous Hall effect can occur in single and few layer graphene systems that have both exchange fields and spin-orbit coupling. In this paper, we present a study of the quantum anomalous Hall effect in single-layer and gated bilayer graphene systems with Rashba spin-orbit coupling. We compute Berry curvatures at each valley point and find that for single-layer graphene the Hall conductivity is quantized at σxy=2e2/h\sigma_{xy} = 2e^2/h, with each valley contributing a unit conductance and a corresponding chiral edge state. In bilayer graphene, we find that the quantized anomalous Hall conductivity is twice that of the single-layer case when the gate voltage UU is smaller than the exchange field MM, and zero otherwise. Although the Chern number vanishes when U>MU > M, the system still exhibits a quantized valley Hall effect, with the edge states in opposite valleys propagating in opposite directions. The possibility of tuning between different topological states with an external gate voltage suggests possible graphene-based spintronics applications.Comment: 9 pages, final published versio

    Self-supervised learning-based general laboratory progress pretrained model for cardiovascular event detection

    Full text link
    The inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism, and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the detection of specific cardiovascular event. GLP implemented a two-stage training approach, leveraging the information embedded within interpolated data and amplify the performance of SSL. After GLP pretraining, it is transferred for TVR detection. The proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority (p < 0.01) compared to prior GLP processing. Our study effectively engages in translational engineering by transferring patient progression of cardiovascular laboratory parameters from one patient group to another, transcending the limitations of data availability. The transferability of disease progression optimized the strategies of examinations and treatments, and improves patient prognosis while using commonly available laboratory parameters. The potential for expanding this approach to encompass other diseases holds great promise.Comment: published in IEEE Journal of Translational Engineering in Health & Medicin

    Ultrafast High-Energy Micro-Supercapacitors Based On Open-Shell Polymer-Graphene Composites

    Get PDF
    Micro-supercapacitors are poised to serve as on-chip power sources for electronics. However, the challenge to simultaneously increase their power, energy, and lifetime demands new material combinations beyond current carbon-based systems. Here, we demonstrate that electro-deposition of an open-shell conjugated polymer with reduced graphene oxide achieves electrodes with capacitance up to 186 mF cm−2 (372 F cm−3). The extended delocalization within the open-shell polymer stabilizes redox states and facilitates a 3 V wide potential window, while the hierarchical electrode structure promotes ultrafast kinetics. The micro-supercapacitor shows a high power density of 227 mW cm−2 with an energy density of 10.5 μWh cm−2 and stability of 84% capacitance retention after 11,000 cycles. These attributes allow operation at 120 Hz for fast charging and alternating current (AC) line filtering applications, which may be suitable to replace bulky electrolytic capacitors or serve as high-endurance energy storage for wireless electronics

    Bioactivity-guided purification of novel herbal antioxidant and anti-NO compounds from Euonymus laxiflorus Champ

    Get PDF
    [[abstract]]Euonymus laxiflorus Champ., a medicinal herb collected in Vietnam, has been reported to show several potent bioactivities, including anti-NO, enzyme inhibition, hypoglycemic and antidiabetic effects. Recently, the antioxidant activity of Euonymus laxiflorus Champ. trunk bark (ELCTB) has also been reported. However, the active antioxidant and anti-NO constituents existing in ELCTB have not been reported in the literature. The objective of this study was to purify the active antioxidants from ELCTB and investigate the anti-NO effect of the major constituents. Twenty-two phenolics isolated from ELCTB, including 12 compounds newly isolated in this study (1–12) and 10 constituents obtained from our previous work, were evaluated for their antioxidant activity. Of these, 12 compounds (4–6, 9, 13–15, 18–22) showed a potent antioxidant capacity (FRS50 = 7.8–58.11 µg/mL), in comparison to α-tocopherol (FRS50 = 23 µg/mL). In the anti-NO activity tests, Walterolactone A (1a) and B (1b) β-D-glucopyranoside (13) demonstrated the most effective and comparable activity to that of quercetin with max inhibition and IC50 values of 100%, 1.3 µg/mL, and 100%, 1.21 µg/mL, respectively. The crude extract and its major compounds showed no cytotoxicity on normal cells. Notably, three constituents (9, 11, and 12) were identified as new compounds, another three constituents, including 1, 7, and 8, were found to be new natural products, constituents 9 and 13 were determined to be new antioxidants, and compound 13 was reported to have novel potent anti-NO activity for the first time. The results of this study contribute to the enrichment of new natural products and compounds, as well as the novel biological activity of constituents isolated from Euonymus laxiflorus Champ. The current study also indicates ELCTB as a rich natural source of active phenolics. It is suggested that ELCTB could be developed as a health food with promising antioxidant and anti-NO effects, as well as other beneficial biological activities.[[sponsorship]]科技部[[notice]]補正完

    Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses

    Full text link
    Though extensively studied, hardness, defined as the resistance of a material to deformation, still remains a challenging issue for a formal theoretical description due to its inherent mechanical complexity. The widely applied Teter's empirical correlation between hardness and shear modulus has been considered to be not always valid for a large variety of materials. Here, inspired by the classical work on Pugh's modulus ratio, we develop a theoretical model which establishes a robust correlation between hardness and elasticity for a wide class of materials, including bulk metallic glasses, with results in very good agreement with experiment. The simplified form of our model also provides an unambiguous theoretical evidence for Teter's empirical correlation.Comment: 10 pages, 4 figures and 3 table
    • …
    corecore