4,913 research outputs found

    EM Scattering by a Conducting Sphere Coated with a Uniaxial Layer under Arbitrary Illumination Angle in a Fixed Laboratory Frame

    Get PDF
    Under a fixed laboratory frame, the electromagnetic theory of the scattering of a plane wave of arbitrary polarizations incidence from arbitrary angles by a uniaxial anisotropic medium was obtained for the first time, and could be solved analytically from an eigensystem determined by a uniaxial anisotropic medium. By applying the boundary conditions at respective interfaces of the coated spherical structure, the unknown expansion coefficients can be obtained from the incident field and the electromagnetic fields in the anisotropic medium, and from the scattered field. Not only did the numerical results demonstrate the validity of our proposed theory but this paper shall also provide discussions in relation to some general cases (under arbitrary incident angles) of bistatic radar cross section

    Towards the Application of Classification Techniques to Test and Identify Faults in Multimedia Systems

    Get PDF
    The advances in computer and graphic technologies have led to the popular use of multimedia for information exchange. However, multimedia systems are difficult to test. A major reason is that these systems generally exhibit fuzziness in their temporal behaviors. The fuzziness may be caused by the existence of non-deterministic factors in their runtime environments, such as system load and network traffic. It complicates the analysis of test results. The problem is aggravated when a test involves the synchronization of different multimedia streams as well as variations in system loading.\ud \ud In this paper, we conduct an empirical study on the testing and fault-identification of multimedia systems by treating the issue as a classification problem. Typical classification techniques, including Bayesian networks, k-nearest neighbor, and neural networks, are experimented with the use of X-Smiles, an open sourced multimedia authoring tool supporting the Synchronized Multimedia Integration Language (SMIL). From these experiments, we make a few interesting observations and give plausible explanations based on the geometrical properties of the test results

    Scale-free user-network approach to telephone network traffic analysis

    Get PDF
    PACS number(s): 89.75.Hc, 89.75.Da, 89.75.FbAuthor name used in this publication: Chi K. TseAuthor name used in this publication: Francis C. M. Lau2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures

    Get PDF
    Poster presentationpublished_or_final_versio

    How Many Muscles? Optimal Muscles Set Search for Optimizing Myocontrol Performance

    Get PDF
    In myo-control, for computational and setup constraints, the measurement of a high number of muscles is not always possible: the choice of the muscle set to use in a myo-control strategy depends on the desired application scope and a search for a reduced muscle set, tailored to the application, has never been performed. The identification of such set would involve finding the minimum set of muscles whose difference in terms of intention detection performance is not statistically significant when compared to the original set. Also, given the intrinsic sensitivity of muscle synergies to variations of EMG signals matrix, the reduced set should not alter synergies that come from the initial input, since they provide physiological information on motor coordination. The advantages of such reduced set, in a rehabilitation context, would be the reduction of the inputs processing time, the reduction of the setup bulk and a higher sensitivity to synergy changes after training, which can eventually lead to modifications of the ongoing therapy. In this work, the existence of a minimum muscle set, called optimal set, for an upper-limb myoelectric application, that preserves performance of motor activity prediction and the physiological meaning of synergies, has been investigated. Analyzing isometric contractions during planar reaching tasks, two types of optimal muscle sets were examined: a subject-specific one and a global one. The former relies on the subject-specific movement strategy, the latter is composed by the most recurrent muscles among subjects specific optimal sets and shared by all the subjects. Results confirmed that the muscle set can be reduced to achieve comparable hand force estimation performances. Moreover, two types of muscle synergies namely “Pose-Shared” (extracted from a single multi-arm-poses dataset) and “Pose-Related” (clustering pose-specific synergies), extracted from the global optimal muscle set, have shown a significant similarity with full-set related ones meaning a high consistency of the motor primitives. Pearson correlation coefficients assessed the similarity of each synergy. The discovering of dominant muscles by means of the optimization of both muscle set size and force estimation error may reveal a clue on the link between synergistic patterns and the force task
    corecore