4,419 research outputs found

    Molecular Dynamics Computer Simulation of the Dynamics of Supercooled Silica

    Full text link
    We present the results of a large scale computer simulation of supercooled silica. We find that at high temperatures the diffusion constants show a non-Arrhenius temperature dependence whereas at low temperature this dependence is also compatible with an Arrhenius law. We demonstrate that at low temperatures the intermediate scattering function shows a two-step relaxation behavior and that it obeys the time temperature superposition principle. We also discuss the wave-vector dependence of the nonergodicity parameter and the time and temperature dependence of the non-Gaussian parameter.Comment: 5 pages, Latex, 6 postscript figure

    Temperature and orientation dependence of kinetic roughening during homoepitaxy: A quantitative x-ray-scattering study of Ag

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevB.54.17938 DOI:10.1103/PhysRevB.54.17938Kinetic roughening during homoepitaxial growth was studied for Ag(111) and Ag(001). For Ag(111), from 150 to 500 K, the rms roughness exhibits a power law, σ∝tβ over nearly three decades in thickness. β≈1/2 at low temperatures, and there is an abrupt transition to smaller values above 300 K. In contrast, Ag(001) exhibits layer-by-layer growth with a significantly smaller β. These results are the first to establish the evolution of surface roughness quantitatively for a broad thickness and temperature range, as well as for the case where growth kinetics are dominated by a step-ledge diffusion barrier.Support is acknowledged from the University of Missouri Research Board, the NSF under Contract Nos. DMR-9202528 and DMR-9623827, and the Midwest Superconductivity Consortium ~MISCON! under DOE Grant No. DE-FG02-90ER45427. The SUNY X3 beamline is supported by the DOE under Contract No. DE-FG02-86ER45231, and the NSLS is supported by the DOE, Div. of Materials Sciences and Div. of Chemical Sciences. One of us ~W.C.E.! acknowledges support from the GAANN program of the U.S. Department of Education. We thank Ian Robinson for the Ag~111! crystal

    Glass-Like Heat Conduction in High-Mobility Crystalline Semiconductors

    Full text link
    The thermal conductivity of polycrystalline semiconductors with type-I clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr and/or Eu) exhibit lattice thermal conductivities typical of amorphous materials. Remarkably, this behavior occurs in spite of the well-defined crystalline structure and relatively high electron mobility (100cm2/Vs\sim 100 cm^2/Vs). The dynamics of dopant ions and their interaction with the polyhedral cages of the structure are a likely source of the strong phonon scattering.Comment: 4 pages, 3 postscript figures, to be published, Phys. Rev. Let

    Towards catheter steering using magnetic tractor beam coupling

    Get PDF
    Catheters are used in various clinical applications, and the ability to direct the catheter to the desired location is critical for clinical outcomes. Steerable catheters assist clinicians to access targeted areas, notably the vascular bundles and major vessels, while causing no damage to the surrounding tissue. A novel catheter actuation technology for catheter steering is presented in this study. The technique is simple and relies on three magnetic couples interacting with one another to generate steering motions. A proof-of-concept catheter prototype demonstrated the capacity to remotely steer a catheter over 100 mm of distance and ±45° of angular positioning, showing the potential manoeuvrability for clinical applications. It is feasible to steer a catheter using this three-magnet pair approach with the great potential to be used for catheterisation procedures. The presented mechanism’s kinematics and a near-form solution for catheter steering regardless of design factors will be studied in the future

    Magnetically steerable catheters: State of the art review

    Get PDF
    Magnetically steerable catheters (MSCs) have caught the interest of researchers due to their various potential uses in clinical applications, for example, minimally invasive surgery. Many significant advances in the design, implementation and analysis of MSCs have been accomplished in the last decade. This review concentrates on the configurations of current MSCs with an in depth look at control of the device and the specific workspace. This review also evaluates MSCs and references possible future system designs and difficulties. The concept of magnetic manipulation is briefly presented. Then, by category, the MSC is introduced. Following that, a discussion of future works and challenges of the review systems is provided. The conclusions are finally addressed

    Exact Analytical Bit Error Rates for Multiple Access Chaos-Based Communication Systems

    Full text link

    Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

    Full text link
    Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark-Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of "rotational" periodic solutions that display lens-chain structures for a general NN-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure

    The electronic structure of amorphous silica: A numerical study

    Full text link
    We present a computational study of the electronic properties of amorphous SiO2. The ionic configurations used are the ones generated by an earlier molecular dynamics simulations in which the system was cooled with different cooling rates from the liquid state to a glass, thus giving access to glass-like configurations with different degrees of disorder [Phys. Rev. B 54, 15808 (1996)]. The electronic structure is described by a tight-binding Hamiltonian. We study the influence of the degree of disorder on the density of states, the localization properties, the optical absorption, the nature of defects within the mobility gap, and on the fluctuations of the Madelung potential, where the disorder manifests itself most prominently. The experimentally observed mismatch between a photoconductivity threshold of 9 eV and the onset of the optical absorption around 7 eV is interpreted by the picture of eigenstates localized by potential energy fluctuations in a mobility gap of approximately 9 eV and a density of states that exhibits valence and conduction band tails which are, even in the absence of defects, deeply located within the former band gap.Comment: 21 pages of Latex, 5 eps figure
    corecore