4,872 research outputs found

    Path integral Monte Carlo simulations of silicates

    Full text link
    We investigate the thermal expansion of crystalline SiO2_2 in the β\beta-- cristobalite and the β\beta-quartz structure with path integral Monte Carlo (PIMC) techniques. This simulation method allows to treat low-temperature quantum effects properly. At temperatures below the Debye temperature, thermal properties obtained with PIMC agree better with experimental results than those obtained with classical Monte Carlo methods.Comment: 27 pages, 10 figures, Phys. Rev. B (in press

    A combined XAS and XRD Study of the High-Pressure Behaviour of GaAsO4 Berlinite

    Full text link
    Combined X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) experiments have been carried out on GaAsO4 (berlinite structure) at high pressure and room temperature. XAS measurements indicate four-fold to six-fold coordination changes for both cations. The two local coordination transformations occur at different rates but appear to be coupled. A reversible transition to a high pressure crystalline form occurs around 8 GPa. At a pressure of about 12 GPa, the system mainly consists of octahedral gallium atoms and a mixture of arsenic in four-fold and six-fold coordinations. A second transition to a highly disordered material with both cations in six-fold coordination occurs at higher pressures and is irreversible.Comment: 8 pages, 5 figures, LaTeX2

    Few-shot learning approach with multi-scale feature fusion and attention for plant disease recognition

    Get PDF
    Image-based deep learning method for plant disease diagnosing is promising but relies on large-scale dataset. Currently, the shortage of data has become an obstacle to leverage deep learning methods. Few-shot learning can generalize to new categories with the supports of few samples, which is very helpful for those plant disease categories where only few samples are available. However, two challenging problems are existing in few-shot learning: (1) the feature extracted from few shots is very limited; (2) generalizing to new categories, especially to another domain is very tough. In response to the two issues, we propose a network based on the Meta-Baseline few-shot learning method, and combine cascaded multi-scale features and channel attention. The network takes advantage of multi-scale features to rich the feature representation, uses channel attention as a compensation module efficiently to learn more from the significant channels of the fused features. Meanwhile, we propose a group of training strategies from data configuration perspective to match various generalization requirements. Through extensive experiments, it is verified that the combination of multi-scale feature fusion and channel attention can alleviate the problem of limited features caused by few shots. To imitate different generalization scenarios, we set different data settings and suggest the optimal training strategies for intra-domain case and cross-domain case, respectively. The effects of important factors in few-shot learning paradigm are analyzed. With the optimal configuration, the accuracy of 1-shot task and 5-shot task achieve at 61.24% and 77.43% respectively in the task targeting to single-plant, and achieve at 82.52% and 92.83% in the task targeting to multi-plants. Our results outperform the existing related works. It demonstrates that the few-shot learning is a feasible potential solution for plant disease recognition in the future application

    Glass-Like Heat Conduction in High-Mobility Crystalline Semiconductors

    Full text link
    The thermal conductivity of polycrystalline semiconductors with type-I clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr and/or Eu) exhibit lattice thermal conductivities typical of amorphous materials. Remarkably, this behavior occurs in spite of the well-defined crystalline structure and relatively high electron mobility (100cm2/Vs\sim 100 cm^2/Vs). The dynamics of dopant ions and their interaction with the polyhedral cages of the structure are a likely source of the strong phonon scattering.Comment: 4 pages, 3 postscript figures, to be published, Phys. Rev. Let

    Electrophysiological Mechanisms of Gastrointestinal Arrhythmogenesis: Lessons from the Heart.

    Get PDF
    This is the final published version. It first appeared at http://journal.frontiersin.org/article/10.3389/fphys.2016.00230/full.Disruptions in the orderly activation and recovery of electrical excitation traveling through the heart and the gastrointestinal (GI) tract can lead to arrhythmogenesis. For example, cardiac arrhythmias predispose to thromboembolic events resulting in cerebrovascular accidents and myocardial infarction, and to sudden cardiac death. By contrast, arrhythmias in the GI tract are usually not life-threatening and much less well characterized. However, they have been implicated in the pathogenesis of a number of GI motility disorders, including gastroparesis, dyspepsia, irritable bowel syndrome, mesenteric ischaemia, Hirschsprung disease, slow transit constipation, all of which are associated with significant morbidity. Both cardiac and gastrointestinal arrhythmias can broadly be divided into non-reentrant and reentrant activity. The aim of this paper is to compare and contrast the mechanisms underlying arrhythmogenesis in both systems to provide insight into the pathogenesis of GI motility disorders and potential molecular targets for future therapy

    The electronic structure of amorphous silica: A numerical study

    Full text link
    We present a computational study of the electronic properties of amorphous SiO2. The ionic configurations used are the ones generated by an earlier molecular dynamics simulations in which the system was cooled with different cooling rates from the liquid state to a glass, thus giving access to glass-like configurations with different degrees of disorder [Phys. Rev. B 54, 15808 (1996)]. The electronic structure is described by a tight-binding Hamiltonian. We study the influence of the degree of disorder on the density of states, the localization properties, the optical absorption, the nature of defects within the mobility gap, and on the fluctuations of the Madelung potential, where the disorder manifests itself most prominently. The experimentally observed mismatch between a photoconductivity threshold of 9 eV and the onset of the optical absorption around 7 eV is interpreted by the picture of eigenstates localized by potential energy fluctuations in a mobility gap of approximately 9 eV and a density of states that exhibits valence and conduction band tails which are, even in the absence of defects, deeply located within the former band gap.Comment: 21 pages of Latex, 5 eps figure
    corecore