840 research outputs found

    Superadiabatic dynamical density functional study of Brownian hard-spheres in time-dependent external potentials

    Get PDF
    Superadiabatic dynamical density functional theory (superadiabatic-DDFT), a first-principles approach based on the inhomogeneous two-body correlation functions, is employed to investigate the response of interacting Brownian particles to time-dependent external driving. Predictions for the superadiabatic dynamics of the one-body density are made directly from the underlying interparticle interactions, without need for either adjustable fit parameters or simulation input. The external potentials we investigate have been chosen to probe distinct aspects of structural relaxation in dense, strongly interacting liquid states. Nonequilibrium density profiles predicted by the superadiabatic theory are compared with those obtained from both adiabatic DDFT and event-driven Brownian dynamics simulation. Our findings show that superadiabatic-DDFT accurately predicts the time-evolution of the one-body density

    Mean-Field Theory of Inhomogeneous Fluids

    Full text link
    The Barker-Henderson perturbation theory is a bedrock of liquid-state physics, providing quantitative predictions for the bulk thermodynamic properties of realistic model systems. However, this successful method has not been exploited for the study of inhomogeneous systems. We develop and implement a first-principles 'Barker-Henderson density functional', thus providing a robust and quantitatively accurate theory for classical fluids in external fields. Numerical results are presented for the hard-core Yukawa model in three dimensions. Our predictions for the density around a fixed test particle and between planar walls are in very good agreement with simulation data. The density profiles for the free liquid vapour interface show the expected oscillatory decay into the bulk liquid as the temperature is reduced towards the triple point, but with an amplitude much smaller than that predicted by the standard mean-field density functional

    Alterations in energy balance from an exercise intervention with ad libitum food intake.

    Get PDF
    Better understanding is needed regarding the effects of exercise alone, without any imposed dietary regimens, as a single tool for body-weight regulation. Thus, we evaluated the effects of an 8-week increase in activity energy expenditure (AEE) on ad libitum energy intake (EI), body mass and composition in healthy participants with baseline physical activity levels (PAL) in line with international recommendations. Forty-six male adults (BMI = 19·7-29·3 kg/m(2)) participated in an intervention group, and ten (BMI = 21·0-28·4 kg/m(2)) in a control group. Anthropometric measures, cardiorespiratory fitness, EI, AEE and exercise intensity were recorded at baseline and during the 1st, 5th and 8th intervention weeks, and movement was recorded throughout. Body composition was measured at the beginning and at the end of the study, and resting energy expenditure was measured after the study. The intervention group increased PAL from 1·74 (se 0·03) to 1·93 (se 0·03) (P < 0·0001) and cardiorespiratory fitness from 41·4 (se 0·9) to 45·7 (se 1·1) ml O2/kg per min (P = 0·001) while decreasing body mass (-1·36 (se 0·2) kg; P = 0·001) through adipose tissue mass loss (ATM) (-1·61 (se 0·2) kg; P = 0·0001) compared with baseline. The control group did not show any significant changes in activity, body mass or ATM. EI was unchanged in both groups. The results indicate that in normal-weight and overweight men, increasing PAL from 1·7 to 1·9 while keeping EI ad libitum over an 8-week period produces a prolonged negative energy balance. Replication using a longer period (and/or more intense increase in PAL) is needed to investigate if and at what body composition the increase in AEE is met by an equivalent increase in EI

    Effects of purified perforin and granzyme A from cytotoxic T lymphocytes on guinea pig ventricular myocytes

    Get PDF
    OBJECTIVE: Involvement of cytotoxic T lymphocytes (CTL) in heart transplant rejection as well as in viral myocarditis is well established, but the precise mechanisms whereby infiltrating CTL damage the myocardium are unknown. The aim of the study was to investigate how CTL derived perforin, the serine protease granzyme A, and the combination of both, damage guinea pig ventricular myocytes. METHODS: Action potentials and membrane currents were recorded by means of the whole cell configuration from guinea pig ventricular myocytes. RESULTS: Resembling the effects of CTL derived lytic granules, perforin caused gradual myocyte shortening and contracture, leading to complete loss of the rod shaped morphology and to cell destruction. These changes were preceded by shortening of action potential duration and reduction of resting potential and action potential amplitude, followed by complete inexcitability. Granzyme A alone was ineffective, but accelerated the deleterious effects of perforin on the morphological and electrophysiological properties of myocytes. The effects of perforin were further evaluated by measuring membrane currents by means of the whole cell voltage clamp. Perforin induced discrete changes in membrane current, reminiscent of single ion channels, with large conductance and open time of up to several seconds. Linear regression analysis of the channel I-V relations resulted in a conductance of 890 pS and a reversal potential of -7.6 mV. These results suggest that perforin induces large non-selective channels, which can account for most of the observed adverse effects. CONCLUSIONS: As CTL participate in the immunological rejection of the transplanted heart, it is conceivable, but remains to be shown, that part of this damage is inflicted by perforin containing lytic granules

    Hodgkin's lymphoma in remission after first-line therapy: which patients need FDG-PET/CT for follow-up?

    Get PDF
    Background: The purpose of the study was to evaluate the impact of 2-[fluorine-18]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) during follow-up of patients with Hodgkin's lymphoma. Patients and methods: Patients in complete remission or an unconfirmed complete remission after first-line therapy who received FDG-PET/CT during their follow-up were analyzed retrospectively. Confirmatory biopsy was mandatory in case of recurrence. Results: Overall, 134 patients were analyzed. Forty-two (31.3%) patients had a recurrence. The positive predictive value of FDG-PET/CT was 0.98. Single-factor analysis identified morphological residual mass [P = 0.0005, hazard ratio (HR) 3.4, 95% confidence interval (CI) 1.7-6.6] and symptoms (P 24 months). Conclusions: Asymptomatic patients without morphological residues and an early stage of disease do not need a routine FDG-PET/CT for follow-up. Asymptomatic patients with morphological residues should receive routine follow-up FDG-PET/CT for the first 24 months. Only patients with advanced initial stage do need a routine follow-up FDG-PET/CT beyond 24 month

    Structure and evolutionary origin of the human granzyme H gene

    Get PDF
    Among the molecules proposed to be involved in cytotoxic T lymphocyte (CTL), natural killer (NK) and lymphokine activated killer (LAK) cell-mediated lysis are the granzymes, a family of serine proteases stored in the cytoplasmic granules of CTLs, NK and LAK cells. In addition to the granzymes A and B, a third member of this family has been cloned in man and designated granzyme H. We present the complete gene sequence including the 5' promoter region and demonstrate that the granzyme H sequence represents a functional gene expressed in activated T cells. Granzyme H shows the highest degree (greater than 54%) of amino acid sequence homology with granzyme B and cathepsin G and, like these genes, consists of five exons separated by introns at equivalent positions. The evolutionary history of granzyme H has been analyzed by reconstructing an evolutionary tree for granzyme sequences. We provide evidence that interlocus recombination between the ancestral genes of granzyme B and granzyme H occurred about 21 million years ago, leading to a replacement of exon 3, intron 3 and part of exon 4 in human granzyme H by human granzyme B sequences. Our results suggest that the ancestral gene of granzyme H is more closely related to cathepsin G and granzyme B than to the murine granzymes C to G. Thus, granzyme H does not represent a human counterpart of the known murine granzymes A to G. It diverged from cathepsin G before mammalian radiation and should, therefore, exist in other mammalian lineages as well

    Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Get PDF
    Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event
    corecore