237 research outputs found

    Intrinsic spin Hall torque in a moire Chern magnet

    Full text link
    In spin torque magnetic memories, electrically actuated spin currents are used to switch a magnetic bit. Typically, these require a multilayer geometry including both a free ferromagnetic layer and a second layer providing spin injection. For example, spin may be injected by a nonmagnetic layer exhibiting a large spin Hall effect, a phenomenon known as spin-orbit torque. Here, we demonstrate a spin-orbit torque magnetic bit in a single two-dimensional system with intrinsic magnetism and strong Berry curvature. We study AB-stacked MoTe2/WSe2, which hosts a magnetic Chern insulator at a carrier density of one hole per moire superlattice site. We observe hysteretic switching of the resistivity as a function of applied current. Magnetic imaging using a superconducting quantum interference device reveals that current switches correspond to reversals of individual magnetic domains. The real space pattern of domain reversals aligns precisely with spin accumulation measured near the high-Berry curvature Hubbard band edges. This suggests that intrinsic spin- or valley-Hall torques drive the observed current-driven magnetic switching in both MoTe2/WSe2 and other moire materials. The switching current density of 10^3 Amps per square centimeter is significantly less than reported in other platforms paving the way for efficient control of magnetic order

    Intervalley coherence and intrinsic spin-orbit coupling in rhombohedral trilayer graphene

    Full text link
    Rhombohedral graphene multilayers provide a clean and highly reproducible platform to explore the emergence of superconductivity and magnetism in a strongly interacting electron system. Here, we use electronic compressibility and local magnetometry to explore the phase diagram of this material class in unprecedented detail. We focus on rhombohedral trilayer in the quarter metal regime, where the electronic ground state is characterized by the occupation of a single spin and valley isospin flavor. Our measurements reveal a subtle competition between valley imbalanced (VI) orbital ferromagnets and intervalley coherent (IVC) states in which electron wave functions in the two momentum space valleys develop a macroscopically coherent relative phase. Contrasting the in-plane spin susceptibility of the IVC and VI phases reveals the influence of graphene's intrinsic spin-orbit coupling, which drives the emergence of a distinct correlated phase with hybrid VI and IVC character. Spin-orbit also suppresses the in-plane magnetic susceptibility of the VI phase, which allows us to extract the spin-orbit coupling strength of λ≈50μ\lambda \approx 50\mueV for our hexagonal boron nitride-encapsulated graphene system. We discuss the implications of finite spin-orbit coupling on the spin-triplet superconductors observed in both rhombohedral and twisted graphene multilayers

    Search for the Rare Decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-, where the X0 is a possible new neutral boson that was reported by the HyperCP experiment with a mass of (214.3 pm 0.5) MeV/c^{2}. We find no evidence for either decay. We obtain upper limits of Br(KL->pi0pi0X0->pi0pi0mu+mu-) pi0pi0mu+mu-) < 9.2 x 10^{-11} at the 90% confidence level. This result rules out the pseudoscalar X0 as an explanation of the HyperCP result under the scenario that the \bar{d}sX0 coupling is completely real

    Search for the Rare Decay K_{L}\to\pi^{0}\pi^{0}\gamma

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decay KL→π0π0γK_{L}\to\pi^{0}\pi^{0}\gamma via the topology KL→π0πD0γK_{L}\to\pi^{0}\pi^{0}_D\gamma (where πD0→γe+e−\pi^0_D\to\gamma e^+e^-). Due to Bose statistics of the π0\pi^0 pair and the real nature of the photon, the KL→π0π0γK_{L}\to\pi^{0}\pi^{0}\gamma decay is restricted to proceed at lowest order by the CP conserving direct emission (DE) of an E2 electric quadrupole photon. The rate of this decay is interesting theoretically since chiral perturbation theory predicts that this process vanishes at level O(p4)O(p^4). Therefore, this mode probes chiral perturbation theory at O(p6)O(p^6). In this paper we report a determination of an upper limit of 2.43×10−72.43\times 10^{-7} (90% CL) for KL→π0π0γK_{L}\to\pi^{0}\pi^{0}\gamma. This is approximately a factor of 20 lower than previous results.Comment: six pages and six figures in the submission. Reformatted for Physics Review

    Determination of the Parity of the Neutral Pion via the Four-Electron Decay

    Full text link
    We present a new determination of the parity of the neutral pion via the double Dalitz decay pi^0 -> e+ e- e+ e-. Our sample, which consists of 30511 candidate decays, was collected from K_L -> pi0 pi0 pi0 decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi^0 parity, and place a limit on scalar contributions to the pi^0 -> e+ e- e+ e- decay amplitude of less than 3.3% assuming CPT conservation. The pi^0 gamma* gamma* form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi^0 -> e+ e- e+ e-) = (3.26 +- 0.18) x 10^(-5).Comment: 5 pages, 4 figures. Typographical error in radiative branching ratio (Eq. 6) correcte

    A Measurement of the K0 Charge Radius and a CP Violating Asymmetry Together with a Search for CP Violating E1 Direct Photon Emission in the Rare Decay KL->pi+pi-e+e-

    Full text link
    Using the complete KTeV data set of 5241 candidate KL->pi+pi-e+e- decays (including an estimated background of 204+-14 events), we have measured the coupling gCR=0.163+- 0.014(stat)+-0.023(syst) of the CP conserving charge radius process and from it determined a K0 charge radius of (K0)=(-0.077+-0.007(stat)+-0.011(syst)) fm**2. We have also determined a first experimental upper limit of 0.04 (90% CL) for the ratio |g_{E1}|/|g_{M1}| of the coupling for the E1 direct photon emission process relative to the coupling for M1 direct photon emission process. We also report the measurement of its associated vector form factor |gM1`|(1+ (a_1/a_2)/(M(rho)**2-M(K)**2)+2M(K)E(gamma*)) where |gM1`|=(1.11+- 0.12(stat)+-0.08(syst) and a_1/a_2 = (-0.744+-0.027(stat)0.032(syst)) GeV**2/c**2. In addition, a measurement of the manifestly CP violating asymmetry of magnitude (13.6+- 1.4+-(stat)+-1.5(syst))% in the CP and T odd angle phi between the decay planes of the e+e- and pi+pi- pairs in the KL center of mass system is reported
    • …
    corecore