30 research outputs found

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    SAR real time motion compensation: Average cancellation method for aircraft motion error extraction

    No full text
    Singapore ICCS - Conference Proceedings129-340003

    Least variance estimation of motion error for synthetic aperture radar

    No full text
    Singapore ICCS - Conference Proceedings120-230003

    Utility of mosquito surveillance data for spatial prioritization of vector control against dengue viruses in three Brazilian cities

    Get PDF
    Background: Vector control remains the primary defense against dengue fever. Its success relies on the assumption that vector density is related to disease transmission. Two operational issues include the amount by which mosquito density should be reduced to minimize transmission and the spatio-temporal allotment of resources needed to reduce mosquito density in a cost-effective manner. Recently, a novel technology, MI-Dengue, was implemented city-wide in several Brazilian cities to provide real-time mosquito surveillance data for spatial prioritization of vector control resources. We sought to understand the role of city-wide mosquito density data in predicting disease incidence in order to provide guidance for prioritization of vector control work. Methods: We used hierarchical Bayesian regression modeling to examine the role of city-wide vector surveillance data in predicting human cases of dengue fever in space and time. We used four years of weekly surveillance data from Vitoria city, Brazil, to identify the best model structure. We tested effects of vector density, lagged case data and spatial connectivity. We investigated the generality of the best model using an additional year of data from Vitoria and two years of data from other Brazilian cities: Governador Valadares and Sete Lagoas. Results: We found that city-wide, neighborhood-level averages of household vector density were a poor predictor of dengue-fever cases in the absence of accounting for interactions with human cases. Effects of city-wide spatial patterns were stronger than within-neighborhood or nearest-neighborhood effects. Readily available proxies of spatial relationships between human cases, such as economic status, population density or between-neighborhood roadway distance, did not explain spatial patterns in cases better than unweighted global effects. Conclusions: For spatial prioritization of vector controls, city-wide spatial effects should be given more weight than within-neighborhood or nearest-neighborhood connections, in order to minimize city-wide cases of dengue fever. More research is needed to determine which data could best inform city-wide connectivity. Once these data become available, MI-dengue may be even more effective if vector control is spatially prioritized by considering city-wide connectivity between cases together with information on the location of mosquito density and infected mosquitos

    Scientific Advances in Lung Cancer 2015.

    No full text
    Lung cancer continues to be a major global health problem; the disease is diagnosed in more than 1.6 million new patients each year. However, significant progress is underway in both the prevention and treatment of lung cancer. Lung cancer therapy has now emerged as a "role model" for precision cancer medicine, with several important therapeutic breakthroughs occurring during 2015. These advances have occurred primarily in the immunotherapy field and in treatments directed against tumors harboring specific oncogenic drivers. Our knowledge about molecular mechanisms for oncogene-driven tumors and about resistance to targeted therapies has increased quickly over the past year. As a result, several regulatory approvals of new agents that significantly improve survival and quality of life for patients with lung cancer who have advanced disease have occurred. The International Association for the Study of Lung Cancer has gathered experts in different areas of lung cancer research and management to summarize the most significant scientific advancements related to prevention and therapy of lung cancer during the past year
    corecore