32 research outputs found

    Velocity vector imaging to quantify left atrial function

    Get PDF
    The aim of our study was to assess the feasibility of a new image analysis, velocity vector imaging (VVI), in the assessment of left atrial volumes (LAV) and left atrial ejection fraction (LAEF). We retrospectively analysed 100 transthoracic echocardiographic findings in 71 men, and 29 women (mean age 57 ± 19.8 years). Two subgroups of patients were defined: (1) with left ventricular (LV) EF > 50%, and (2) LV EF < 50%. For the VVI method of indexed LAV assessment we used the apical four-chamber view. From the displacement of LA endocardial pixels time–volume curves were extracted which provided automatically data regarding indexed maximum LAV (LAVImax), indexed minimum LAV (LAVImin), and LAEF. LAVs and LAEF by 2-dimensional echocardiograhy (2DE) were measured by Simpson’s biplane disc summation method. Comparing LAVImax, LAVImin, and LAEF by VVI versus 2DE in the total study population, we found significant correlations: r = 0.94, P < 0.0001, r = 0.94, P < 0.0001, r = 0.79, P < 0.0001, respectively. In addition, LAVImax ≥ 40 ml/m2 was 94% sensitive and 72% specific, LAVImin ≥ 27 ml/m2 was 90% sensitive and 86% specific, and LAEF < 30% was 80% sensitive and 96% specific for the detection of LV systolic dysfunction. There were highly significant inverse associations of LAVImax and LAVImin to LVEF. LAEF was also significantly related to LV systolic function. When comparing the time required for VVI and 2DE measurements, VVI led to 62% reduction in the measurement time. In conclusion, VVI is a feasible method for the assessment of LAVs and LAEF. It provides close agreement with that measured by conventional 2DE Simpson’s biplane method with significant time saved

    Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study

    Get PDF
    Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely

    Update on hypertrophic cardiomyopathy and a guide to the guidelines

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, affecting 1 in 500 individuals worldwide. Existing epidemiological studies might have underestimated the prevalence of HCM, however, owing to limited inclusion of individuals with early, incomplete phenotypic expression. Clinical manifestations of HCM include diastolic dysfunction, left ventricular outflow tract obstruction, ischaemia, atrial fibrillation, abnormal vascular responses and, in 5% of patients, progression to a 'burnt-out' phase characterized by systolic impairment. Disease-related mortality is most often attributable to sudden cardiac death, heart failure, and embolic stroke. The majority of individuals with HCM, however, have normal or near-normal life expectancy, owing in part to contemporary management strategies including family screening, risk stratification, thromboembolic prophylaxis, and implantation of cardioverter-defibrillators. The clinical guidelines for HCM issued by the ACC Foundation/AHA and the ESC facilitate evaluation and management of the disease. In this Review, we aim to assist clinicians in navigating the guidelines by highlighting important updates, current gaps in knowledge, differences in the recommendations, and challenges in implementing them, including aids and pitfalls in clinical and pathological evaluation. We also discuss the advances in genetics, imaging, and molecular research that will underpin future developments in diagnosis and therapy for HCM

    Secreted PDZD2 exerts concentration-dependent effects on the proliferation of INS-1E cells

    No full text
    PDZD2 (PDZ domain containing 2) is a multi-PDZ protein expressed in pancreas and many other tissues. PDZD2 shows extensive homology to pro-interleukin-16 (pro-IL-16) and is localized mainly to the endoplasmic reticulum. We have recently demonstrated that PDZD2, like pro-IL-16, is proteolytically cleaved at its C-terminus to generate a secreted protein, sPDZD2 (for secreted PDZD2). To understand the possible functional role of PDZD2 in pancreas, we investigated the cellular distribution of PDZD2 in adult pancreas using an antiserum that recognizes both the full-length and secreted forms of PDZD2. Immunohistochemical analysis revealed a strong expression of PDZD2 in pancreatic islet β cells but not α cells. Consistent with the β-cell-enriched expression of PDZD2, immunoblot analysis indicated expression of both full-length PDZD2 and sPDZD2 in the insulinoma cell line INS-1E. A recombinant sPDZD2 protein was synthesized for study of its functional effect on INS-1E cells. In culture media with limiting serum, co-incubation with sPDZD2 stimulated the proliferation of INS-1E cells. The mitogenic effect of sPDZD2 was concentration-dependent, and was associated with a slight inhibition of the insulin promoter activity at high sPDZD2 concentrations. As a potential mitogen of β-like cells, sPDZD2 may be useful for the optimization of β-cell growth and differentiation in vitro. © 2005 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex
    corecore