7,555 research outputs found

    User manual of the CATSS system (version 1.0) communication analysis tool for space station

    Get PDF
    The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction

    Space Shuttle/TDRSS communication and tracking systems analysis

    Get PDF
    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed

    Ku-band system design study and TDRSS interface analysis

    Get PDF
    The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated

    Endohedral terthiophene in zigzag carbon nanotubes: Density functional calculations

    Full text link
    The inclusion and encapsulation of terthiophene (T3) molecules inside zigzag single-walled carbon nanotubes (CNTs) is addressed by density functional calculations. We consider the T3 molecule inside five semiconducting CNTs with diameters ranging from 9.6 to 12.7 Ang. Our results show that the T3 inclusion process is exothermic for CNTs with diameters larger than 9.5 Ang. The highest energy gain is found to be of 2 eV, decreasing as the CNT diameter increases. This notable effect of stabilization is attributed to the positively charged CNT inner space, as induced by its curvature, which is able to accommodate the neutral T3 molecule. The band structure of the T3@CNT system shows that T3 preserves its electronic identity inside the CNTs, superimposing their molecular orbitals onto the empty CNT band structure without hybridization. Our results predict that the electronic states added by the T3 molecules would give rise to optical effects and nonradiative relaxation from excited states.Comment: 5 pages, 5 figures, 1 table, accepted in PR

    The Discovery of an X-ray/UV Stellar Flare from the Late-K/Early-M Dwarf LMC 335

    Get PDF
    We report the discovery of an X-ray/UV stellar flare from the source LMC 335, captured by XMM-Newton in the field of the Large Magellanic Cloud. The flare event was recorded continuously in X-ray for its first 10 hours from the precursor to the late decay phases. The observed fluxes increased by more than two orders of magnitude at its peak in X-ray and at least one in the UV as compared to quiescence. The peak 0.1-7.0 keV X-ray flux is derived from the two-temperature APEC model to be ~(8.4 +/- 0.6) x 10^-12 erg cm-2 s-1. Combining astrometric information from multiple X-ray observations in the quiescent and flare states, we identify the NIR counterpart of LMC 335 as the 2MASS source J05414534-6921512. The NIR color relations and spectroscopic parallax characterize the source as a Galactic K7-M4 dwarf at a foreground distance of (100 - 264) pc, implying a total energy output of the entire event of ~(0.4 - 2.9) x 10^35 erg. This report comprises detailed analyses of this late-K / early-M dwarf flare event that has the longest time coverage yet reported in the literature. The flare decay can be modeled with two exponential components with timescales of ~28 min and ~4 hours, with a single component decay firmly ruled out. The X-ray spectra during flare can be described by two components, a dominant high temperature component of ~40-60MK and a low temperature component of ~10MK, with a flare loop length of about 1.1-1.3 stellar radius.Comment: 35 pages, 6 figures, 5 tables, accepted for publication in Ap
    • …
    corecore