18 research outputs found

    Production of 10-methyl branched fatty acids in yeast

    Get PDF
    Background: Despite the environmental value of biobased lubricants, they account for less than 2% of global lubricant use due to poor thermo-oxidative stability arising from the presence of unsaturated double bonds. Methyl branched fatty acids (BFAs), particularly those with branching near the acyl-chain mid-point, are a high-performance alternative to existing vegetable oils because of their low melting temperature and full saturation. Results: We cloned and characterized two pathways to produce 10-methyl BFAs isolated from actinomycetes and γ-proteobacteria. In the two-step bfa pathway of actinomycetes, BfaB methylates Δ9 unsaturated fatty acids to form 10-methylene BFAs, and subsequently, BfaA reduces the double bond to produce a fully saturated 10-methyl branched fatty acid. A BfaA-B fusion enzyme increased the conversion efficiency of 10-methyl BFAs. The ten-methyl palmitate production (tmp) pathway of γ-proteobacteria produces a 10-methylene intermediate, but the TmpA putative reductase was not active in E. coli or yeast. Comparison of BfaB and TmpB activities revealed a range of substrate specificities from C14-C20 fatty acids unsaturated at the Δ9, Δ10 or Δ11 position. We demonstrated efficient production of 10-methylene and 10-methyl BFAs in S. cerevisiae by secretion of free fatty acids and in Y. lipolytica as triacylglycerides, which accumulated to levels more than 35% of total cellular fatty acids. Conclusions: We report here the characterization of a set of enzymes that can produce position-specific methylene and methyl branched fatty acids. Yeast expression of bfa enzymes can provide a platform for the large-scale production of branched fatty acids suitable for industrial and consumer applications

    Improved Gene Targeting through Cell Cycle Synchronization.

    Get PDF
    Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications

    Carbon catabolite repression in <it>Thermoanaerobacterium saccharolyticum</it>

    No full text
    Abstract Background The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol. Results We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization. Conclusion Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.</p

    Method for increased gene targeting.

    No full text
    <p>Cells are grown in the presence of hydroxyurea to induce cell cycle arrest in S-phase with high HR activity (a). <i>Y</i>. <i>lipolytica</i> YB-392 cells untreated or arrested at the large-budded stage are shown. HU-arrested cells are transformed with an antibiotic resistance cassette bearing the marker flanked by short regions of homology to the promoter and terminator of the target gene (b). Homologous recombination between the cassette and genomic DNA leads to replacement of the target gene with the marker (c). Antibiotic-resistant colonies are screened by PCR to distinguish between random and targeted integration using primer sets specific to each integration outcome (d).</p

    Effect of HU treatment on gene targeting efficiency.

    No full text
    <p>Transformants of <i>Y</i>. <i>lipolytica</i>, <i>A</i>. <i>adeninivorans</i>, <i>S</i>. <i>cerevisiae</i>, <i>P</i>. <i>pastoris and K</i>. <i>lactis</i> untreated or pretreated with HU were screened to distinguish random and targeted integration events. The percentage of gene targeting is shown and the number of total transformants screened is included in parentheses. Targeted genes are listed by their systematic names (<i>Y</i>. <i>lipolytica</i>, <i>S</i>. <i>cerevisiae</i>, <i>P</i>. <i>pastoris K</i>. <i>lactis</i>) or GenBank accession numbers (<i>A</i>. <i>adeninivorans</i>). The Fisher’s exact test hypergeometric probability for each individual experiment is tabulated in the last column.</p

    Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol

    No full text
    This project addressed the need for economical technology for the conversion of lignocellulosic biomass to fuels, specifically the conversion of pretreated hardwood to ethanol. The technology developed is a set of strains of the bacterium Thermoanaerobacterium saccharolyticum and an associated fermentation process for pretreated hardwood. Tools for genetic engineering and analysis of the organism were developed, including a markerless mutation method, a complete genome sequence and a set of gene expression profiles that show the activity of its genes under a variety of conditions relevant to lignocellulose conversion. Improved strains were generated by selection and genetic engineering to be able to produce higher amounts of ethanol (up to 70 g/L) and to be able to better tolerate inhibitory compounds from pretreated hardwood. Analysis of these strains has generated useful insight into the genetic basis for desired properties of biofuel producing organisms. Fermentation conditions were tested and optimized to achieve ethanol production targets established in the original project proposal. The approach proposed was to add cellulase enzymes to the fermentation, a method called Simultaneous Saccharification and Fermentation (SSF). We had reason to think SSF would be an efficient approach because the optimal temperature and pH for the enzymes and bacterium are very close. Unfortunately, we discovered that commercially available cellulases are inactivated in thermophilic SSF by a combination of low redox potential and ethanol. Despite this, progress was made against the fermentation targets using bacterial cellulases. Thermoanaerobacterium saccharolyticum may still prove to be a commercially viable technology should cellulase enzyme issues be addressed. Moreover, the organism was demonstrated to produce ethanol at approximately theoretical yield from oligomeric hemicellulose extracts, an ability that may prove to be uniquely valuable in pretreatment configurations in which cellulose and hemicellulose are separated

    Engineering of a high lipid producing Yarrowia lipolytica strain

    No full text
    Background: Microbial lipids are produced by many oleaginous organisms including the well-characterized yeast Yarrowia lipolytica, which can be engineered for increased lipid yield by up-regulation of the lipid biosynthetic pathway and down-regulation or deletion of competing pathways. Results: We describe a strain engineering strategy centered on diacylglycerol acyltransferase (DGA) gene overexpression that applied combinatorial screening of overexpression and deletion genetic targets to construct a high lipid producing yeast biocatalyst. The resulting strain, NS432, combines overexpression of a heterologous DGA1 enzyme from Rhodosporidium toruloides, a heterlogous DGA2 enzyme from Claviceps purpurea, and deletion of the native TGL3 lipase regulator. These three genetic modifications, selected for their effect on lipid production, enabled a 77 % lipid content and 0.21 g lipid per g glucose yield in batch fermentation. In fed-batch glucose fermentation NS432 produced 85 g/L lipid at a productivity of 0.73 g/L/h. Conclusions: The yields, productivities, and titers reported in this study may further support the applied goal of cost effective, large -scale microbial lipid production for use as biofuels and biochemicals. Keywords: Yarrowia lipolytica, Lipid accumulation, Oleaginous yeast, Metabolic engineeringNovogy, Inc
    corecore