15 research outputs found
MRI assessment of the effects of acetazolamide and external lumbar drainage in idiopathic Normal Pressure Hydrocephalus
BACKGROUND: The objective was to identify changes in quantitative MRI measures in patients with idiopathic normal pressure hydrocephalus (iNPH) occurring in common after oral acetazolamide (ACZ) and external lumbar drainage (ELD) interventions. METHODS: A total of 25 iNPH patients from two clinical sites underwent serial MRIs and clinical assessments. Eight received ACZ (125-375 mg/day) over 3 months and 12 underwent ELD for up to 72 hours. Five clinically-stable iNPH patients who were scanned serially without interventions served as controls for the MRI component of the study. Subjects were divided into responders and non-responders to the intervention based on gait and cognition assessments made by clinicians blinded to MRI results. The MRI modalities analyzed included T1-weighted images, diffusion tensor Imaging (DTI) and arterial spin labelling (ASL) perfusion studies. Automated threshold techniques were used to define regions of T1 hypo-intensities. RESULTS: Decreased volume of T1-hypointensities and decreased mean diffusivity (MD) within remaining hypointensities was observed after ACZ and ELD but not in controls. Patients responding positively to these interventions had more extensive decreases in T1-hypointensites than non-responders: ACZ-responders (4,651 ± 2,909 mm(3)), ELD responders (2,338 ± 1,140 mm(3)), ELD non-responders (44 ± 1,188 mm(3)). Changes in DTI MD within T1-hypointensities were greater in ACZ-responders (7.9% ± 2%) and ELD-responders (8.2% ± 3.1%) compared to ELD non-responders (2.1% ± 3%). All the acetazolamide-responders showed increases in whole-brain-average cerebral blood flow (wbCBF) estimated by ASL (18.8% ± 8.7%). The only observed decrease in wbCBF (9.6%) occurred in an acetazolamide-non-responder. A possible association between cerebral atrophy and response was observed, with subjects having the least cortical atrophy (as indicated by a positive z-score on cortical thickness measurements) showing greater clinical improvement after ACZ and ELD. CONCLUSIONS: T1-hypointensity volume and DTI MD measures decreased in the brains of iNPH patients following oral ACZ and ELD. The magnitude of the decrease was greater in treatment responders than non-responders. Despite having different mechanisms of action, both ELD and ACZ may decrease interstitial brain water and increase cerebral blood flow in patients with iNPH. Quantitative MRI measurements appear useful for objectively monitoring response to acetazolamide, ELD and potentially other therapeutic interventions in patients with iNPH
Texture classification of proteins using support vector machines and bio-inspired metaheuristics
6th International Joint Conference, BIOSTEC 2013, Barcelona, Spain, February 11-14, 2013[Abstract] In this paper, a novel classification method of two-dimensional polyacrylamide gel electrophoresis images is presented. Such a method uses textural features obtained by means of a feature selection process for whose implementation we compare Genetic Algorithms and Particle Swarm Optimization. Then, the selected features, among which the most decisive and representative ones appear to be those related to the second order co-occurrence matrix, are used as inputs for a Support Vector Machine. The accuracy of the proposed method is around 94 %, a statistically better performance than the classification based on the entire feature set. This classification step can be very useful for discarding over-segmented areas after a protein segmentation or identification process
A deep learning oriented method for automated 3D reconstruction of carotid arterial trees from MR imaging
The scope of this paper is to present a new carotid vessel segmentation algorithm implementing the U-net based convolutional neural network architecture. With carotid atherosclerosis being the major cause of stroke in Europe, new methods that can provide more accurate image segmentation of the carotid arterial tree and plaque tissue can help improve early diagnosis, prevention and treatment of carotid disease. Herein, we present a novel methodology combining the U-net model and morphological active contours in an iterative framework that accurately segments the carotid lumen and outer wall. The method automatically produces a 3D meshed model of the carotid bifurcation and smaller branches, using multispectral MR image series obtained from two clinical centres of the TAXINOMISIS study. As indicated by a validation study, the algorithm succeeds high accuracy (99.1% for lumen area and 92.6% for the perimeter) for lumen segmentation. The proposed algorithm will be used in the TAXINOMISIS study to obtain more accurate 3D vessel models for improved computational fluid dynamics simulations and the development of models of atherosclerotic plaque progression
Hereditary neuropathy with liability to pressure palsies: The same molecular defect can result in diverse clinical presentation
Hereditary neuropathy with liability to pressure palsies (HNPP) is a peripheral nerve disorder characterized by autosomal dominant inheritance, recurrent pressure palsies, reduced motor and sensory conduction velocities and sausage-like swellings (tomacula) of myelin sheaths in nerve biopsy. Two young adult patients are reported as index cases of two families in which HNPP was diagnosed. The first patient presented with recurrent pressure palsies, whereas the second suffered from fasciculations and myokymias in his right hand, with difficulty in writing, and upper and lower limb paraesthesias of 3 years' duration. Electrodiagnostic studies revealed slowing of conduction primarily in common sites of compression in both patients. Sural nerve biopsy revealed the characteristic tomaculous swellings in both patients. DNA analysis showed that both patients have a deletion in chromosome 17p11.2 which is found in the majority of HNPP cases. In light of the common molecular defect, the different clinical symptomatology of the two patients is discussed
Delta-like ligand-4-notch signaling inhibition regulates pancreatic islet function and insulin secretion
Although Notch signaling has been proposed as a therapeutic target for type-2 diabetes, liver steatosis, and atherosclerosis, its direct effect on pancreatic islets remains unknown. Here, we demonstrated a function of Dll4-Notch signaling inhibition on the biology of insulin-producing cells. We confirmed enhanced expression of key Notch signaling genes in purified pancreatic islets from diabetic NOD mice and showed that treatment with anti-Dll4 antibody specifically abolished Notch signaling pathway activation. Furthermore, we showed that Notch inhibition could drive proliferation of β-islet cells and confer protection from the development of STZ-induced diabetes. Importantly, inhibition of the Dll4 pathway in WT mice increased insulin secretion by inducing the differentiation of pancreatic β-islet cell progenitors, as well as the proliferation of insulin-secreting cells. These findings reveal a direct effect of Dll4-blockade on pancreatic islets that, in conjunction with its immunomodulatory effects, could be used for unmet medical needs hallmarked by inefficient insulin action
Mobile App Interventions for Parkinson’s Disease, Multiple Sclerosis and Stroke: A Systematic Literature Review
Central nervous system diseases (CNSDs) lead to significant disability worldwide. Mobile app interventions have recently shown the potential to facilitate monitoring and medical management of patients with CNSDs. In this direction, the characteristics of the mobile apps used in research studies and their level of clinical effectiveness need to be explored in order to advance the multidisciplinary research required in the field of mobile app interventions for CNSDs. A systematic review of mobile app interventions for three major CNSDs, i.e., Parkinson’s disease (PD), multiple sclerosis (MS), and stroke, which impose significant burden on people and health care systems around the globe, is presented. A literature search in the bibliographic databases of PubMed and Scopus was performed. Identified studies were assessed in terms of quality, and synthesized according to target disease, mobile app characteristics, study design and outcomes. Overall, 21 studies were included in the review. A total of 3 studies targeted PD (14%), 4 studies targeted MS (19%), and 14 studies targeted stroke (67%). Most studies presented a weak-to-moderate methodological quality. Study samples were small, with 15 studies (71%) including less than 50 participants, and only 4 studies (19%) reporting a study duration of 6 months or more. The majority of the mobile apps focused on exercise and physical rehabilitation. In total, 16 studies (76%) reported positive outcomes related to physical activity and motor function, cognition, quality of life, and education, whereas 5 studies (24%) clearly reported no difference compared to usual care. Mobile app interventions are promising to improve outcomes concerning patient’s physical activity, motor ability, cognition, quality of life and education for patients with PD, MS, and Stroke. However, rigorous studies are required to demonstrate robust evidence of their clinical effectiveness. © 2023 by the authors