161 research outputs found

    Attenuated Cardiac Mitochondrial-Dependent Apoptotic Effects by Li-Fu Formula in Hamsters Fed with a Hypercholesterol Diet

    Get PDF
    Apoptosis involves in the pathogenesis of various cardiac abnormalities. This study intends to evaluate the effects of Li-Fu formula on cardiac apoptosis induced by hyper-cholesterol diet. Twenty-four male Golden Syrian hamsters were randomly divided into Control, Cholesterol and Li-Fu formula groups. Histopathological analysis, western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to measure the effects of Li-Fu formula on left ventricle. Significantly reduced TUNEL-positive cells and mitochondria- dependent apoptosis were observed in the left ventricle of hamsters from Li-Fu formula group compared to the Cholesterol group. Additionally, induced cardiac insulin like growth factor I receptor (IGFIR)-dependent survival pathway was detected in the Li-Fu formula group compared to the Cholesterol group. Besides, minor fibrosis, increased collagen deposition, and myofibril disarray was detected in the Cholesterol group, whereas the reductions of collagen deposition and myofibril disarray were observed in the Li-Fu formula group. This study demonstrated that Li-Fu formula not only reduced the mitochondria-dependent apoptosis and fibrosis, but also enhanced the IGF-I survival pathway in the left ventricle from high cholesterol-fed hamsters. We suggest the protective effects of Li-Fu formula on cardiac apoptosis and therapeutic potentials against cardiovascular disease

    Ameliorate Effects of Li-Fu Formula on IL-6-Mediated Cardiac Hypertrophy in Hamsters Fed with a Hyper-Cholesterol Diet

    Get PDF
    Hypercholesterolemia diets are considered as major sources to cause cardiac hypertrophy. This study intends to evaluate the effects of Li-Fu formula on cardiac hypertrophy induced by hypercholesterolemia diet. Twenty-four male Golden Syrian hamsters were randomly divided into control, cholesterol and Li-Fu formula groups and fed with different experimental diets for 2 months. Histopathological analysis and western blotting were performed to measure the myocardial architecture, and various cardiac hypertrophy-associated molecules in the excised left ventricle from hamsters. The ratios of whole heart weight/body weight (BW) and left ventricle weight/BW were significantly higher in the cholesterol group but significantly lower in the Li-Fu formula group. The protein levels of both atrial natriuretic peptide and brain natriuretic peptide were significantly increased in the cholesterol group but significantly reduced in the Li-Fu formula group. Additionally, significantly increased interleukin-6, STAT3, MEK5, p-ERK5 and non-cardiomyocyte proliferate signal molecules such as p-MEK and p-ERK, were detected in the cholesterol group but significantly reduced in the Li-Fu formula group. Notably, no significant variations of inflammatory signaling molecules, including p-P38 and p-JNK, were detected in all groups. Our experimental results demonstrated the significant reductions of cardiac hypertrophy and related eccentric hypertrophy signaling, non-cardiomyocyte proliferate signaling in the excised left ventricle of hamsters from the Li-Fu formula. We suggested the protective effects of Li-Fu formula on cardiac hypertrophy that may be useful in prevention or treatment of hypertrophy-associated cardiovascular diseases

    Garlic Oil Alleviates MAPKs- and IL-6-mediated Diabetes-related Cardiac Hypertrophy in STZ-induced DM Rats

    Get PDF
    Garlic oil has been reported to protect the cardiovascular system; however, the effects and mechanisms behind the cardioprotection of garlic oil on diabetes-induced cardiaomyopathy are unclear. In this study, we used streptozotocin (STZ)-induced diabetic rats to investigate whether garlic oil could protect the heart from diabetes-induced cardiomyopathy. Wistar STZ-induced diabetic rats received garlic oil (0, 10, 50 or 100 mg kg_1 body weight) by gastric gavage every 2 days for 16 days. Normal rats without diabetes were used as control. Cardiac contractile dysfunction and cardiac pathologic hypertrophy responses were observed in diabetic rat hearts. Cardiac function was examined using echocardiography. In addition to cardiac hypertrophy-related mitogen-activated protein kinases (MAPK) pathways (e.g., p38, c-Jun N-terminal kinases (JNK) and extracellularly responsive kinase (ERK1/2)), the IL-6/MEK5/ERK5 signaling pathway was greatly activated in the diabetic rat hearts, which contributes to the up-regulation of cardiac pathologic hypertrophy markers including atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), and leads to cardiac contractile dysfunction. Garlic oil treatment significantly inhibited the up-regulation in MAPK (e.g., p38, JNK and ERK1/2) and IL-6/MEK5/ERK5 signaling pathways in the diabetic rat hearts, reducing the levels of cardiac pathologic hypertrophy markers such as ANP and BNP, and improving the cardiac contractile function. Collectively, data from these studies demonstrate that garlic oil shows the potential cardioprotective effects for protecting heart from diabetic cardiomyopathy

    The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is the most common cause of dementia characterized by progressive cognitive impairment in the elderly people. The most dramatic abnormalities are those of the cholinergic system. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system, and hence, inhibition of AChE has emerged as one of the most promising strategies for the treatment of AD.</p> <p>Methods</p> <p>In this study, we suggest a workflow for the identification and prioritization of potential compounds targeted against AChE. In order to elucidate the essential structural features for AChE, three-dimensional pharmacophore models were constructed using Discovery Studio 2.5.5 (DS 2.5.5) program based on a set of known AChE inhibitors.</p> <p>Results</p> <p>The best five-features pharmacophore model, which includes one hydrogen bond donor and four hydrophobic features, was generated from a training set of 62 compounds that yielded a correlation coefficient of R = 0.851 and a high prediction of fit values for a set of 26 test molecules with a correlation of R<sup>2 </sup>= 0.830. Our pharmacophore model also has a high Güner-Henry score and enrichment factor. Virtual screening performed on the NCI database obtained new inhibitors which have the potential to inhibit AChE and to protect neurons from Aβ toxicity. The hit compounds were subsequently subjected to molecular docking and evaluated by consensus scoring function, which resulted in 9 compounds with high pharmacophore fit values and predicted biological activity scores. These compounds showed interactions with important residues at the active site.</p> <p>Conclusions</p> <p>The information gained from this study may assist in the discovery of potential AChE inhibitors that are highly selective for its dual binding sites.</p

    Moderate Ethanol Pre-treatment Mitigates ICH-Induced Injury via ER Stress Modulation in Rats

    Get PDF
    Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that disrupts the normal neurological function of the brain. Clinical studies have reported a non-linear J-shaped association between alcohol consumption levels and the occurrence of cerebral stroke. Specifically, alcohol intoxication increases stroke incidence, while moderate alcohol pre-conditioning decreases stroke frequency and improves outcomes. Although alcohol pre-consumption is likely a crucial player in ICH, the underlying mechanism remains unclear. We performed 1-h alcohol pre-conditioning followed by ICH induction in Sprague-Dawley (SD) rats to investigate the role of alcohol pre-conditioning in ICH. Interestingly, behavioral test analysis found that ethanol intoxication (3 g/kg) aggravated ICH-induced neurological deficits, but moderate ethanol pre-conditioning (0.75 g/kg) ameliorated ICH-induced neurological deficits by reducing the oxidative stress and proinflammatory cytokines release. Moreover, we found that moderate ethanol pretreatment improved the striatal endoplasmic reticulum (ER) homeostasis by increasing the chaperone protein expression and reducing oxidative stress and apoptosis caused by ICH. Our findings show that the mechanism regulated by moderate ethanol pre-conditioning might be beneficial for ICH, indicating the importance of ER homeostasis, oxidative stress, and differential cytokines release in ICH
    corecore