6,695 research outputs found

    Missing the Forest for the Trees? Drug-Eluting Balloon Treatment for Infrapopliteal Disease∗

    Get PDF

    Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide

    Get PDF
    The electrochemical reduction of CO_2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO_2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably for HCOO–, C_2H_4, and C_2H_5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO_2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. The observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size

    Properties of the a1 Meson from Lattice QCD

    Full text link
    We determine the mass and decay constant of the a1a_1 meson using Monte Carlo simulation of lattice QCD. We find Ma1=1250±80M_{a_1} = 1250 \pm 80 MeV and fa1=0.30±0.03 (GeV)2f_{a_1} = 0.30 \pm 0.03 ~({\rm GeV})^2, in good agreement with experiment.Comment: 9 page uu-encoded compressed postscript file. version appearing in Phys. Rev. Lett. 74 (1995) 459

    Acute Kidney Injury Risk Prediction in Patients Undergoing Coronary Angiography in a National Veterans Health Administration Cohort with External Validation

    Get PDF
    Background: Acute kidney injury (AKI) occurs frequently after cardiac catheterization and percutaneous coronary intervention. Although a clinical risk model exists for percutaneous coronary intervention, no models exist for both procedures, nor do existing models account for risk factors prior to the index admission. We aimed to develop such a model for use in prospective automated surveillance programs in the Veterans Health Administration. Methods and Results: We collected data on all patients undergoing cardiac catheterization or percutaneous coronary intervention in the Veterans Health Administration from January 01, 2009 to September 30, 2013, excluding patients with chronic dialysis, end‐stage renal disease, renal transplant, and missing pre‐ and postprocedural creatinine measurement. We used 4 AKI definitions in model development and included risk factors from up to 1 year prior to the procedure and at presentation. We developed our prediction models for postprocedural AKI using the least absolute shrinkage and selection operator (LASSO) and internally validated using bootstrapping. We developed models using 115 633 angiogram procedures and externally validated using 27 905 procedures from a New England cohort. Models had cross‐validated C‐statistics of 0.74 (95% CI: 0.74–0.75) for AKI, 0.83 (95% CI: 0.82–0.84) for AKIN2, 0.74 (95% CI: 0.74–0.75) for contrast‐induced nephropathy, and 0.89 (95% CI: 0.87–0.90) for dialysis. Conclusions: We developed a robust, externally validated clinical prediction model for AKI following cardiac catheterization or percutaneous coronary intervention to automatically identify high‐risk patients before and immediately after a procedure in the Veterans Health Administration. Work is ongoing to incorporate these models into routine clinical practice

    Influence of the initial chemical conditions on the rational design of silica particles

    Get PDF
    The influence of the water content in the initial composition on the size of silica particles produced using the Stöber process is well known. We have shown that there are three morphological regimes defined by compositional boundaries. At low water levels (below stoichiometric ratio of water:tetraethoxysilane), very high surface area and aggregated structures are formed; at high water content (>40 wt%) similar structures are also seen. Between these two boundary conditions, discrete particles are formed whose size are dictated by the water content. Within the compositional regime that enables the classical Stöber silica, the structural evolution shows a more rapid attainment of final particle size than the rate of formation of silica supporting the monomer addition hypothesis. The clearer understanding of the role of the initial composition on the output of this synthesis method will be of considerable use for the establishment of reliable reproducible silica production for future industrial adoption

    The Mechanism of Ubiquitination in the Cullin-RING E3 Ligase Machinery: Conformational Control of Substrate Orientation

    Get PDF
    In cullin-RING E3 ubiquitin ligases, substrate binding proteins, such as VHL-box, SOCS-box or the F-box proteins, recruit substrates for ubiquitination, accurately positioning and orienting the substrates for ubiquitin transfer. Yet, how the E3 machinery precisely positions the substrate is unknown. Here, we simulated nine substrate binding proteins: Skp2, Fbw7, β-TrCP1, Cdc4, Fbs1, TIR1, pVHL, SOCS2, and SOCS4, in the unbound form and bound to Skp1, ASK1 or Elongin C. All nine proteins have two domains: one binds to the substrate; the other to E3 ligase modules Skp1/ASK1/Elongin C. We discovered that in all cases the flexible inter-domain linker serves as a hinge, rotating the substrate binding domain, optimally and accurately positioning it for ubiquitin transfer. We observed a conserved proline in the linker of all nine proteins. In all cases, the prolines pucker substantially and the pucker is associated with the backbone rotation toward the E2/ubiquitin. We further observed that the linker flexibility could be regulated allosterically by binding events associated with either domain. We conclude that the flexible linker in the substrate binding proteins orients the substrate for the ubiquitin transfer. Our findings provide a mechanism for ubiquitination and polyubiquitination, illustrating that these processes are under conformational control

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium
    corecore