106 research outputs found

    Severe anaphylactic reactions to glutamic acid decarboxylase (GAD) self peptides in NOD mice that spontaneously develop autoimmune type 1 diabetes mellitus

    Get PDF
    BACKGROUND: Insulin dependent (i.e., "type 1") diabetes mellitus (T1DM) is considered to be a T cell mediated disease in which T(H)1 and T(c )autoreactive cells attack the pancreatic islets. Among the beta-cell antigens implicated in T1DM, glutamic acid decarboxylase (GAD) 65 appears to play a key role in the development of T1DM in humans as well as in non-obese diabetic (NOD) mice, the experimental model for this disease. It has been shown that shifting the immune response to this antigen from T(H)1 towards T(H)2, via the administration of GAD65 peptides to young NOD mice, can suppress the progression to overt T1DM. Accordingly, various protocols of "peptide immunotherapy" of T1DM are under investigation. However, in mice with experimental autoimmune encephalomyelitis (EAE), another autoimmune T(H)1 mediated disease that mimics human multiple sclerosis, anaphylactic shock can occur when the mice are challenged with certain myelin self peptides that initially were administered with adjuvant to induce the disease. RESULTS: Here we show that NOD mice, that spontaneously develop T1DM, can develop fatal anaphylactic reactions upon challenge with preparations of immunodominant GAD65 self peptides after immunization with these peptides to modify the development of T1DM. CONCLUSIONS: These findings document severe anaphylaxis to self peptide preparations used in an attempt to devise immunotherapy for a spontaneous autoimmune disease. Taken together with the findings in EAE, these results suggest that peptide therapies designed to induce a T(H)1 to T(H)2 shift carry a risk for the development of anaphylactic reactivity to the therapeutic peptides

    Immune Sensitization in the Skin Is Enhanced by Antigen-Independent Effects of IgE

    Get PDF
    AbstractContact sensitivity responses require both effective immune sensitization following cutaneous exposure to chemical haptens and antigen-specific elicitation of inflammation upon subsequent hapten challenge. We report that antigen-independent effects of IgE antibodies can promote immune sensitization to haptens in the skin. Contact sensitivity was markedly impaired in IgE−/− mice but was restored by either transfer of sensitized cells from wild-type mice or administration of hapten-irrelevant IgE before sensitization. Moreover, IgE−/− mice exhibited impairment in the reduction of dendritic cell numbers in the epidermis after hapten exposure. Monomeric IgE has been reported to influence mast cell function. We observed diminished contact sensitivity in mice lacking FcÏ”RI or mast cells, and mRNA for several mast cell-associated genes was reduced in IgE−/− versus wild-type skin after hapten exposure. We speculate that levels of IgE normally present in mice favor immune sensitization via antigen-independent but FcÏ”RI-dependent effects on mast cells

    Transcriptional response of human mast cells stimulated via the FcΔRI and identification of mast cells as a source of IL-11

    Get PDF
    BACKGROUND: In asthma and other allergic disorders, the activation of mast cells by IgE and antigen induces the cells to release histamine and other mediators of inflammation, as well as to produce certain cytokines and chemokines. To search for new mast cell products, we used complementary DNA microarrays to analyze gene expression in human umbilical cord blood-derived mast cells stimulated via the high-affinity IgE receptor (FcΔRI). RESULTS: One to two hours after FcΔRI-dependent stimulation, more than 2,400 genes (about half of which are of unknown function) exhibited 2–200 fold changes in expression. The transcriptional program included changes in the expression of IL-11 and at least 30 other cytokines and chemokines. Human mast cells secreted 130–529 pg of IL-11/10(6) cells by 6 h after stimulation with anti-IgE. CONCLUSION: Our initial analysis of the transcriptional program induced in in vitro-derived human mast cells stimulated via the FcΔRI has identified many products that heretofore have not been associated with this cell type, but which may significantly influence mast cell function in IgE-associated host responses. We also have demonstrated that mast cells stimulated via the FcΔRI can secrete IL-11. Based on the previously reported biological effects of IL-11, our results suggest that production of IL-11 may represent one link between IgE-dependent mast cell activation in subjects with allergic asthma and the development of a spectrum of structural changes in the airways of these individuals; such changes, collectively termed "airway remodeling," can constitute an important long term consequence of asthma

    Evidence that Meningeal Mast Cells Can Worsen Stroke Pathology in Mice

    Get PDF
    Stroke is the leading cause of adult disability and the fourth most common cause of death in the United States. Inflammation is thought to play an important role in stroke pathology, but the factors that promote inflammation in this setting remain to be fully defined. An understudied but important factor is the role of meningeal-located immune cells in modulating brain pathology. Although different immune cells traffic through meningeal vessels en route to the brain, mature mast cells do not circulate but are resident in the meninges. With the use of genetic and cell transfer approaches in mice, we identified evidence that meningeal mast cells can importantly contribute to the key features of stroke pathology, including infiltration of granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two mast cell-derived products, interleukin-6 and, to a lesser extent, chemokine (C-C motif) ligand 7, can contribute to stroke pathology. These findings indicate a novel role for mast cells in the meninges, the membranes that envelop the brain, as potential gatekeepers for modulating brain inflammation and pathology after stroke

    Baseline Gastrointestinal Eosinophilia Is Common in Oral Immunotherapy Subjects With IgE-Mediated Peanut Allergy

    Get PDF
    Rationale: Oral immunotherapy (OIT) is an emerging treatment for food allergy. While desensitization is achieved in most subjects, many experience gastrointestinal symptoms and few develop eosinophilic gastrointestinal disease. It is unclear whether these subjects have subclinical gastrointestinal eosinophilia (GE) at baseline. We aimed to evaluate the presence of GE in subjects with food allergy before peanut OIT.Methods: We performed baseline esophagogastroduodenoscopies on 21 adults before undergoing peanut OIT. Subjects completed a detailed gastrointestinal symptom questionnaire. Endoscopic findings were assessed using the Eosinophilic Esophagitis (EoE) Endoscopic Reference Score (EREFS) and biopsies were obtained from the esophagus, gastric antrum, and duodenum. Esophageal biopsies were evaluated using the EoE Histologic Scoring System. Immunohistochemical staining for eosinophil peroxidase (EPX) was also performed. Hematoxylin and eosin and EPX stains of each biopsy were assessed for eosinophil density and EPX/mm2 was quantified using automated image analysis.Results: All subjects were asymptomatic. Pre-existing esophageal eosinophilia (>5 eosinophils per high-power field [eos/hpf]) was present in five participants (24%), three (14%) of whom had >15 eos/hpf associated with mild endoscopic findings (edema, linear furrowing, or rings; median EREFS = 0, IQR 0–0.25). Some subjects also demonstrated basal cell hyperplasia, dilated intercellular spaces, and lamina propria fibrosis. Increased eosinophils were noted in the gastric antrum (>12 eos/hpf) or duodenum (>26 eos/hpf) in 9 subjects (43%). EPX/mm2 correlated strongly with eosinophil counts (r = 0.71, p < 0.0001).Conclusions: Pre-existing GE is common in adults with IgE-mediated peanut allergy. Eosinophilic inflammation (EI) in these subjects may be accompanied by mild endoscopic and histologic findings. Longitudinal data collection during OIT is ongoing

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Mast Cells and IgE can Enhance Survival During Innate and Acquired Host Responses to Venoms.

    Full text link
    Mast cells and immunoglobulin E (IgE) antibodies are thought to promote health by contributing to host responses to certain parasites, but other beneficial functions have remained obscure. Venoms provoke innate inflammatory responses and pathology reflecting the activities of the contained toxins. Venoms also can induce allergic sensitization and development of venom-specific IgE antibodies, which can predispose some subjects to exhibit anaphylaxis upon subsequent exposure to the relevant venom. We found that innate functions of mast cells, including degradation of venom toxins by mast cell-derived proteases, enhanced survival in mice injected with venoms from the honeybee, two species of scorpion, three species of poisonous snakes, or the Gila monster. We also found that mice injected with sub-lethal amounts of honeybee or Russell's viper venom exhibited enhanced survival after subsequent challenge with potentially lethal amounts of that venom, and that IgE antibodies, FcepsilonRI, and probably mast cells contributed to such acquired resistance

    Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms.

    Full text link
    Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell's viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic type 2 (Th2) immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality

    Thirdhand smoke component can exacerbate a mouse asthma model through mast cells.

    No full text
    BackgroundThirdhand smoke (THS) represents the accumulation of secondhand smoke on indoor surfaces and in dust, which, over time, can become more toxic than secondhand smoke. Although it is well known that children of smokers are at increased risk for asthma or asthma exacerbation if the disease is already present, how exposure to THS can influence the development or exacerbation of asthma remains unknown.ObjectiveWe investigated whether epicutaneous exposure to an important component of THS, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), can influence asthma pathology in a mouse model elicited by means of repeated intranasal challenge with cockroach antigen (CRA).MethodsWild-type mice, α7 nicotinic acetylcholine receptor (nAChR)- or mast cell (MC)-deficient mice, and mice with MCs that lacked α7 nAChRs or were the host's sole source of α7 nAChRs were subjected to epicutaneous NNK exposure, intranasal CRA challenge, or both, and the severity of features of asthma pathology, including airway hyperreactivity, airway inflammation, and airway remodeling, was assessed.ResultsWe found that α7 nAChRs were required to observe adverse effects of epicutaneous NNK exposure on multiple features of CRA-induced asthma pathology. Moreover, MC expression of α7 nAChRs contributed significantly to the ability of epicutaneous NNK exposure to exacerbate airway hyperreactivity to methacholine, airway inflammation, and airway remodeling in this model.ConclusionOur results show that skin exposure to NNK, a component of THS, can exacerbate multiple features of a CRA-induced model of asthma in mice and define MCs as key contributors to these adverse effects of NNK
    • 

    corecore